Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(5): e11343, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38746548

RESUMO

Urbanization modifies ecosystem conditions and evolutionary processes. This includes air pollution, mostly as tropospheric ozone (O3), which contributes to the decline of urban and peri-urban forests. A notable case are fir (Abies religiosa) forests in the peripheral mountains southwest of Mexico City, which have been severely affected by O3 pollution since the 1970s. Interestingly, some young individuals exhibiting minimal O3-related damage have been observed within a zone of significant O3 exposure. Using this setting as a natural experiment, we compared asymptomatic and symptomatic individuals of similar age (≤15 years old; n = 10) using histologic, metabolomic, and transcriptomic approaches. Plants were sampled during days of high (170 ppb) and moderate (87 ppb) O3 concentration. Given that there have been reforestation efforts in the region, with plants from different source populations, we first confirmed that all analyzed individuals clustered within the local genetic group when compared to a species-wide panel (Admixture analysis with ~1.5K SNPs). We observed thicker epidermis and more collapsed cells in the palisade parenchyma of needles from symptomatic individuals than from their asymptomatic counterparts, with differences increasing with needle age. Furthermore, symptomatic individuals exhibited lower concentrations of various terpenes (ß-pinene, ß-caryophylene oxide, α-caryophylene, and ß-α-cubebene) than asymptomatic trees, as evidenced through GC-MS. Finally, transcriptomic analyses revealed differential expression for 13 genes related to carbohydrate metabolism, plant defense, and gene regulation. Our results indicate a rapid and contrasting phenotypic response among trees, likely influenced by standing genetic variation and/or plastic mechanisms. They open the door to future evolutionary studies for understanding how O3 tolerance develops in urban environments, and how this knowledge could contribute to forest restoration.


La urbanización altera tanto las condiciones del ecosistema como los procesos evolutivos, siendo la contaminación del aire, principalmente el ozono troposférico (O3), un factor que contribuye al declive de los bosques urbanos y periurbanos. Un ejemplo destacado son los bosques de oyamel (Abies religiosa) en las montañas periféricas al suroeste de la Ciudad de México, que han sufrido graves afectaciones por la contaminación de O3 desde la década de 1970. Resulta curioso observar que algunos individuos jóvenes presentan un daño mínimo relacionado con el O3 dentro de zonas con una exposición significativa a este contaminante. Aprovechando este entorno como un experimento natural, hemos comparado individuos asintomáticos y sintomáticos de edad similar (≤15 años; n = 10) mediante enfoques histológicos, metabolómicos y transcriptómicos. Las muestras de plantas se recolectaron durante días con concentraciones altas (170 ppb) y moderadas (87 ppb) de O3. Dado que se han llevado a cabo esfuerzos de reforestación en la región con plantas de diferentes poblaciones, primero confirmamos que todos los individuos analizados se organizaron dentro del grupo genético local en comparación con un amplio panel poblacional de esta misma especie (Análisis de Admixture con ~1.5 K SNPs). Observamos una epidermis más gruesa y más células colapsadas en el parénquima en empalizada de las agujas de los individuos sintomáticos que de sus contrapartes asintomáticas, y estas diferencias aumentaban con la edad de la aguja. Además, los individuos sintomáticos exhibieron concentraciones más bajas de varios terpenos (ß­pineno, óxido de ß­cariofileno, α­cariofileno y ß­α­cubebeno) que los árboles asintomáticos, según se evidenció mediante GC­MS. Por último, los análisis transcriptómicos revelaron una expresión diferencial para trece genes relacionados con el metabolismo de carbohidratos, la defensa de plantas y la regulación génica. Nuestros resultados indican una respuesta fenotípica rápida y contrastante entre los árboles, probablemente influenciada por la variación genética presente y/o mecanismos plásticos. Estos hallazgos abren la puerta a futuros estudios evolutivos para comprender cómo se desarrolla la tolerancia al O3 en entornos urbanos y cómo este conocimiento podría contribuir a la restauración forestal.

2.
Mol Ecol ; 30(16): 4062-4076, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34160853

RESUMO

Understanding how geographic and environmental heterogeneity drive local patterns of genetic variation is a major goal of ecological genomics and a key question in evolutionary biology. The tropical Andes and inter-Andean valleys are shaped by markedly heterogeneous landscapes, where species experience strong selective processes. We examined genome-wide SNP data together with behavioural and ecological traits (mating calls and body size) known to contribute to genetic isolation in anurans in the banana tree-dwelling frog, Boana platanera, distributed across an environmental gradient in Central Colombia (northern South America). Here, we analysed the relationships between environmentally (temperature and precipitation) associated genetic and phenotypic differentiation and the potential drivers of isolation by environment along an elevation gradient. We identified candidate SNPs associated with temperature and body size, which follow a clinal pattern of genome-wide differentiation tightly coupled with phenotypic variation: as elevation increases, B. platanera exhibits larger body size and longer call duration with more pulses but lower pulse rate and frequency. Thus, the environmental landscape has rendered a scenario where isolation by environment and candidate loci show concordance with phenotypic divergence in this tropical frog along an elevation gradient in the Colombian Andes. Our study sets the basis for evaluating the role of temperature in the genetic structure and local adaptation in tropical treefrogs and its putative effect on life cycle (embryos, tadpoles, adults) along elevation gradients.


Assuntos
Altitude , Anuros , Animais , Anuros/genética , Colômbia , Genômica , Isolamento Reprodutivo
3.
Mol Phylogenet Evol ; 160: 107125, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33636326

RESUMO

Constructing phylogenetic relationships among closely related species is a recurrent challenge in evolutionary biology, particularly for long-lived taxa with large effective population sizes and uncomplete reproductive isolation, like conifers. Conifers further have slow evolutionary rates, which raises the question of whether adaptive or non/adaptive processes were predominantly involved when they rapidly diversified after migrating from temperate regions into the tropical mountains. Indeed, fine-scale phylogenetic relationships within several conifer genus remain under debate. Here, we studied the phylogenetic relationships of endemic firs (Abies, Pinaceae) discontinuously distributed in the montane forests from the Southwestern United States to Guatemala, and addressed several hypotheses related to adaptive and non-adaptive radiations. We derived over 80 K SNPs from genotyping by sequencing (GBS) for 45 individuals of nine Mesoamerican species to perform phylogenetic analyses. Both Maximum Likelihood and quartets-inference phylogenies resulted in a well-resolved topology, showing a single fir lineage divided in four subgroups that coincided with the main mountain ranges of Mesoamerica; thus having important taxonomic implications. Such subdivision fitted a North-South isolation by distance framework, in which non-adaptive allopatric processes seemed the rule. Interestingly, several reticulations were observed within subgroups, especially in the central-south region, which may explain past difficulties for generating infrageneric phylogenies. Further evidence for non-adaptive processes was obtained from analyses of 21 candidate-gene regions, which exhibited diminishing values of πa/πs and Ka/Ks with latitude, thus indicating reduced efficiency of purifying selection towards the Equator. Our study indicates that non-adaptive allopatric processes may be key generators of species diversity and endemism in the tropics.


Assuntos
Abies , Evolução Biológica , Clima Tropical , Abies/classificação , Abies/genética , Florestas , Filogenia
4.
Mol Ecol ; 29(24): 4797-4811, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33063352

RESUMO

Severe bottlenecks significantly diminish the amount of genetic diversity and the speed at which it accumulates (i.e., evolutionary rate). They further compromise the efficiency of natural selection to eliminate deleterious variants, which may reach fixation in the surviving populations. Consequently, expanding and adapting to new environments may pose a significant challenge when strong bottlenecks result in genetic pauperization. Herein, we surveyed the patterns of nucleotide diversity, molecular adaptation and genetic load across 177 gene-loci in a circum-Mediterranean conifer (Pinus pinea L.) that represents one of the most extreme cases of genetic pauperization in widespread outbreeding taxa. We found very little genetic variation in both hypervariable nuclear microsatellites (SSRs) and gene-loci, which translated into genetic diversity estimates one order of magnitude lower than those previously reported for pines. Such values were consistent with a strong population decline that began some ~1 Ma. Comparisons with the related and parapatric maritime pine (Pinus pinaster Ait.) revealed reduced rates of adaptive evolution (α and ωa ) and a significant accumulation of genetic load. It is unlikely that these are the result from differences in mutation rate or linkage disequilibrium between the two species; instead they are the presumable outcome of contrasting demographic histories affecting both the speed at which these taxa accumulate genetic diversity, and the global efficacy of selection. Future studies, and programs for conservation and management, should thus start testing for the effects of genetic load on fitness, and integrating such effects into predictive models.


Assuntos
Pinus , Árvores , Animais , Carga Genética , Variação Genética , Repetições de Microssatélites/genética , Pinus/genética
5.
PeerJ ; 6: e5496, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30225165

RESUMO

Many neotropical species have a complex history of diversification as a result of the influence of geographical, ecological, climatic, and geological factors that determine the distribution of populations within a lineage. Phylogeography identifies such populations, determines their geographic distributions, and quantifies the degree of genetic divergence. In this work we explored the genetic structure of Habia rubica populations, a polytypic taxon with 17 subspecies described, in order to obtain hypotheses about their evolutionary history and processes of diversification. We undertook multilocus analyses using sequences of five molecular markers (ND2, ACOI-I9, MUSK, FGB-I5 and ODC), and sampling from across the species' distribution range, an area encompassing from Central Mexico throughout much of South America. With these data, we obtained a robust phylogenetic hypothesis, a species delimitation analysis, and estimates of divergence times for these lineages. The phylogenetic hypothesis of concatenated molecular markers shows that H. rubica can be divided in three main clades: the first includes Mexican Pacific coast populations, the second is formed by population from east of Mexico to Panama and the third comprises the South American populations. Within these clades we recognize seven principal phylogroups whose limits have a clear correspondence with important geographical discontinuities including the Isthmus of Tehuantepec in southern Mexico, the Talamanca Cordillera, and the Isthmus of Panama in North America. In South America, we observed a marked separation of two phylogroups that include the populations that inhabit mesic forests in western and central South America (Amazon Forest) and those inhabiting the seasonal forest from the eastern and northern regions of the South America (Atlantic Forest). These areas are separated by an intervening dry vegetation "diagonal" (Chaco, Cerrado and Caatinga). The geographic and genetic structure of these phylogroups describes a history of diversification more active and complex in the northern distribution of this species, producing at least seven well-supported lineages that could be considered species.

6.
Front Plant Sci ; 9: 400, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29662500

RESUMO

Analyses of genetic variation allow understanding the origin, diversification and genetic resources of cultivated plants. Domesticated taxa and their wild relatives are ideal systems for studying genetic processes of plant domestication and their joint is important to evaluate the distribution of their genetic resources. Such is the case of the domesticated subspecies C. argyrosperma ssp. argyrosperma, known in Mexico as calabaza pipiana, and its wild relative C. argyrosperma ssp. sororia. The main aim of this study was to use molecular data (microsatellites) to assess the levels of genetic variation and genetic differentiation within and among populations of domesticated argyrosperma across its distribution in Mexico in comparison to its wild relative, sororia, and to identify environmental suitability in previously proposed centers of domestication. We analyzed nine unlinked nuclear microsatellite loci to assess levels of diversity and distribution of genetic variation within and among populations in 440 individuals from 19 populations of cultivated landraces of argyrosperma and from six wild populations of sororia, in order to conduct a first systematic analysis of their genetic resources. We also used species distribution models (SDMs) for sororia to identify changes in this wild subspecies' distribution from the Holocene (∼6,000 years ago) to the present, and to assess the presence of suitable environmental conditions in previously proposed domestication sites. Genetic variation was similar among subspecies (HE = 0.428 in sororia, and HE = 0.410 in argyrosperma). Nine argyrosperma populations showed significant levels of inbreeding. Both subspecies are well differentiated, and genetic differentiation (FST) among populations within each subspecies ranged from 0.152 to 0.652. Within argyrosperma we found three genetic groups (Northern Mexico, Yucatan Peninsula, including Michoacan and Veracruz, and Pacific coast plus Durango). We detected low levels of gene flow among populations at a regional scale (<0.01), except for the Yucatan Peninsula, and the northern portion of the Pacific Coast. Our analyses suggested that the Isthmus of Tehuantepec is an effective barrier isolating southern populations. Our SDM results indicate that environmental characteristics in the Balsas-Jalisco region, a potential center of domestication, were suitable for the presence of sororia during the Holocene.

8.
Mol Ecol ; 26(17): 4483-4496, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28664998

RESUMO

Identifying the genetic basis of phenotypic variation and its relationship with the environment is key to understanding how local adaptations evolve. Such patterns are especially interesting among populations distributed across habitat gradients, where genetic structure can be driven by isolation by distance (IBD) and/or isolation by environment (IBE). Here, we used variation in ~1,600 high-quality SNPs derived from paired-end sequencing of double-digest restriction site-associated DNA (ddRAD-Seq) to test hypotheses related to IBD and IBE in the Yucatan jay (Cyanocorax yucatanicus), a tropical bird endemic to the Yucatán Peninsula. This peninsula is characterized by a precipitation and vegetation gradient-from dry to evergreen tropical forests-that is associated with morphological variation in this species. We found a moderate level of nucleotide diversity (π = .008) and little evidence for genetic differentiation among vegetation types. Analyses of neutral and putatively adaptive SNPs (identified by complementary genome-scan approaches) indicate that IBD is the most reliable explanation to account for frequency distribution of the former, while IBE has to be invoked to explain those of the later. These results suggest that selective factors acting along a vegetation gradient can promote local adaptation in the presence of gene flow in a vagile, nonmigratory and geographically restricted species. The putative candidate SNPs identified here are located within or linked to a variety of genes that represent ideal targets for future genomic surveys.


Assuntos
Adaptação Fisiológica/genética , Ecossistema , Genética Populacional , Passeriformes/genética , Animais , Cruzamento , Fluxo Gênico , Variação Genética , Genômica , México , Polimorfismo de Nucleotídeo Único
9.
J Mol Evol ; 76(3): 146-57, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23400389

RESUMO

In plants, mitochondrial sequence tandem repeats (STRs) have been associated with intragenomic recombination, a process held responsible for evolutionary outcomes such as gene regulation or cytoplasmic male-sterility. However, no link has been established between the recurrent accumulation of STRs and increased mutation rates in specific regions of the plant mtDNA genome. Herein, we surveyed this possibility by comparing, in a phylogenetic context, the variation of a STR-rich mitochondrial intron (nad5-4) with eleven mtDNA genes devoid of STRs within Abies (Pinaceae) and its related genera. This intron has been accumulating repeated stretches, generated by at least three-independent insertions, before the split of the two Pinaceae subfamilies, Abietoideae and Pinoideae. The last of these insertions occurred before the divergence of Abies and produced, exclusively within this genus, a tenfold increase of both the indel and substitution rates in the STR hotspot of the intron. The regions flanking the STRs harbored mutation rates as low as those estimated in mitochondrial genes devoid of repeated stretches. Further searches in complete plant mtDNA genomes, and previous studies reporting polymorphic mtSTRs, revealed that repeated stretches are common in all sorts of plants, but their accumulation in STR hotspots appears to be taxa specific. Our study suggests a new mutagenic role for repeated sequences in the plant mtDNA.


Assuntos
Abies/genética , Evolução Molecular , Genoma Mitocondrial/genética , Genoma de Planta , Repetições de Microssatélites/genética , Sequência de Bases , Genes Mitocondriais , Genoma de Planta/genética , Mutagênese Insercional/genética , Mutagênese Insercional/fisiologia , Mutação/fisiologia , Filogenia , Pinaceae/classificação , Pinaceae/genética
10.
Mol Ecol Resour ; 13(2): 324-36, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23351128

RESUMO

High-density SNP genotyping arrays can be designed for any species given sufficient sequence information of high quality. Two high-density SNP arrays relying on the Infinium iSelect technology (Illumina) were designed for use in the conifer white spruce (Picea glauca). One array contained 7338 segregating SNPs representative of 2814 genes of various molecular functional classes for main uses in genetic association and population genetics studies. The other one contained 9559 segregating SNPs representative of 9543 genes for main uses in population genetics, linkage mapping of the genome and genomic prediction. The SNPs assayed were discovered from various sources of gene resequencing data. SNPs predicted from high-quality sequences derived from genomic DNA reached a genotyping success rate of 64.7%. Nonsingleton in silico SNPs (i.e. a sequence polymorphism present in at least two reads) predicted from expressed sequenced tags obtained with the Roche 454 technology and Illumina GAII analyser resulted in a similar genotyping success rate of 71.6% when the deepest alignment was used and the most favourable SNP probe per gene was selected. A variable proportion of these SNPs was shared by other nordic and subtropical spruce species from North America and Europe. The number of shared SNPs was inversely proportional to phylogenetic divergence and standing genetic variation in the recipient species, but positively related to allele frequency in P. glauca natural populations. These validated SNP resources should open up new avenues for population genetics and comparative genetic mapping at a genomic scale in spruce species.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Picea/genética , Polimorfismo de Nucleotídeo Único , Genômica , Genótipo , Filogenia , Picea/classificação
11.
Mol Phylogenet Evol ; 62(1): 263-74, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22019929

RESUMO

The genus Abies is distributed discontinuously in the temperate and subtropical montane forests of the northern hemisphere. In Mesoamerica (Mexico and northern Central America), modern firs originated from the divergence of isolated mountain populations of migrating North American taxa. However, the number of ancestral species, migratory waves and diversification speed of these taxa is unknown. Here, variation in repetitive (Pt30204, Pt63718, and Pt71936) and non-repetitive (rbcL, rps18-rpl20 and trnL-trnF) regions of the chloroplast genome was used to reconstruct the phylogenetic relationships of the Mesoamerican Abies in a genus-wide context. These phylogenies and two fossil-calibrated scenarios were further employed to estimate divergence dates and diversification rates within the genus, and to test the hypothesis that, as in many angiosperms, conifers may exhibit accelerated speciation rates in the subtropics. All phylogenies showed five main clusters that mostly agreed with the currently recognized sections of Abies and with the geographic distribution of species. The Mesoamerican taxa formed a single group with species from southwestern North America of sections Oiamel and Grandis. However, populations of the same species were not monophyletic within this group. Divergence of this whole group dated back to the late Paleocene and the early Miocene depending on the calibration used, which translated in very low diversification rates (r(0.0)=0.026-0.054, r(0.9)=0.009-0.019 sp/Ma). Such low rates were a constant along the entire genus, including both the subtropical and temperate taxa. An extended phylogeographic analysis on the Mesoamerican clade indicated that Abies flinckii and A. concolor were the most divergent taxa, while the remaining species (A. durangensis, A. guatemalensis, A. hickelii, A. religiosa and A. vejari) formed a single group. Altogether, these results show that divergence of Mesoamerican firs coincides with a model of environmental stasis and decreased extinction rate, being probably prompted by a series of range expansions and isolation-by-distance.


Assuntos
Abies/genética , Especiação Genética , Filogenia , Abies/classificação , Sequência de Bases , Teorema de Bayes , América Central , Evolução Molecular , Genes de Cloroplastos , Variação Genética , Funções Verossimilhança , Cadeias de Markov , México , Modelos Genéticos , Método de Monte Carlo , Filogeografia , Alinhamento de Sequência , Análise de Sequência de DNA
12.
Mol Ecol ; 19(23): 5265-80, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21044193

RESUMO

Assessing species' range-wide cytoplasmic diversity provides valuable insights regarding their dispersal and adaptive potential in a changing environment. Transcontinental chloroplast (cpDNA) and mitochondrial DNA (mtDNA) population structures were compared to identify putative ancestral and new cytoplasmic genome assemblages in black spruce (Picea mariana), a North American boreal conifer. Mean within-population diversity and allelic richness for cpSSR markers were 0.80 and 4.21, respectively, and diminished westward. Population differentiation based on G(ST) was lower for cpDNA than for mtDNA (G(ST) =0.104 and 0.645, respectively) but appeared comparable when estimated using Jost differentiation index (D=0.459 and 0.537, respectively). Further analyses resulted in the delineation of at least three genetically distinct cpDNA lineages partially congruent with those inferred from mtDNA data, which roughly corresponded to western, central and eastern Canada. Additionally, the patterns of variation in Alaska for both cpDNA and mtDNA markers suggested that black spruce survived the last glacial maximum in this northern region. The range-wide comparison of the geographic extent of cytoplasmic DNA lineages revealed that extensive pollen gene flow between ancestral lineages occurred preferentially from west to east during the postglacial expansion of the species, while seed-mediated gene flow remained geographically restricted. This differential gene flow promoted intraspecific cytoplasmic capture that generated new assemblages of cpDNA and mtDNA genomes during the Holocene. Hence, black spruce postglacial colonization unexpectedly resulted in an increase in genetic diversity with possible adaptive consequences.


Assuntos
Fluxo Gênico , Genética Populacional , Filogeografia , Picea/genética , Alaska , Canadá , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , DNA de Plantas/genética , Variação Genética , Haplótipos , Pólen/genética , Sementes/genética , Análise de Sequência de DNA
13.
BMC Evol Biol ; 10: 22, 2010 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-20100325

RESUMO

BACKGROUND: Despite its role as a generator of haplotypic variation, little is known about how the rates of recombination evolve across taxa. Recombination is a very labile force, susceptible to evolutionary and life trait related processes, which have also been correlated with general levels of genetic diversity. For example, in plants, it has been shown that long-lived outcrossing taxa, such as trees, have higher heterozygosity (He) at SSRs and allozymes than selfing or annual species. However, some of these tree taxa have surprisingly low levels of nucleotide diversity at the DNA sequence level, which points to recombination as a potential generator of genetic diversity in these organisms. In this study, we examine how genome-wide and within-gene rates of recombination evolve across plant taxa, determine whether such rates are influenced by the life-form adopted by species, and evaluate if higher genome-wide rates of recombination translate into higher He values, especially in trees. RESULTS: Estimates of genome-wide (cM/Mb) recombination rates from 81 higher plants showed a significant phylogenetic signal. The use of different comparative phylogenetic models demonstrated that there is a positive correlation between recombination rate and He (0.83 +/- 0.29), and that trees have higher rates of genome-wide recombination than short-lived herbs and shrubs. A significant taxonomic component was further made evident by our models, as conifers exhibited lower recombination rates than angiosperms. This trend was also found at the within-gene level. CONCLUSIONS: Altogether, our results illustrate how both common ancestry and life-history traits have to be taken into account for understanding the evolution of genetic diversity and genomic rates of recombination across plant species, and highlight the relevance of species life forms to explain general levels of diversity and recombination.


Assuntos
Evolução Molecular , Modelos Genéticos , Filogenia , Plantas/genética , Recombinação Genética , DNA de Plantas/genética , Bases de Dados Genéticas , Genoma de Planta , Heterozigoto , Análise de Sequência de DNA
14.
Mol Ecol ; 17(10): 2476-90, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18422927

RESUMO

The genus Abies has a complex history in southern México and Guatemala. In this region, four closely related species, Abies flinckii, A. guatemalensis, A. hickelii, and A. religiosa, are distributed in fragmented and isolated montane populations. Range-wide genetic variation was investigated across species using cytoplasmic DNA markers with contrasted inheritance. Variation at two maternally inherited mitochondrial DNA markers was low. All species shared two of the nine mitotypes detected, while the remaining seven mitochondrial DNA types were restricted to a few isolated stands. Mitochondrial genetic differentiation across taxa was high (G(ST) = 0.933), it was not related to the taxonomic identity (amova; P > 0.05) of the populations, and it was not phylogeographically structured (G(ST) approximately N(ST)). In contrast, variation at three paternally inherited chloroplast DNA microsatellites was high. Chloroplast genetic differentiation was lower (G(ST) = 0.402; R(ST) = 0.547) than for mitochondrial DNA, but it was significantly related to taxonomy (amova; P < 0.001), and exhibited a significant phylogeographical structure (G(ST) < R(ST)). Different analyses of population structure indicated that A. flinckii was the most divergent taxon, while the remaining three species formed a relatively homogeneous group. However, a small number of the populations of these three taxa, all located at the limits of their respective ranges or in the Transverse Volcanic Belt, diverged from this main cluster. These trends suggest that the Mesoamerican Abies share a recent common ancestor and that their divergence and speciation is mainly driven by genetic drift and isolation during the warm interglacial periods.


Assuntos
Abies/genética , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Polimorfismo Genético , Geografia , Guatemala , México , Dados de Sequência Molecular , Análise de Sequência de DNA , Árvores , Clima Tropical
15.
Mol Ecol ; 15(13): 3907-18, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17054492

RESUMO

Subalpine larch (Larix lyallii Parl.) and western larch (Larix occidentalis Nutt.) represent two closely related species with contrasting abundance and distribution patterns in Western North America. Genetic diversity at seven informative microsatellite loci was determined for 19 populations of subalpine larch and nine populations of western larch. Contrasting genetic diversity and patterns of population differentiation were observed between the two species. The overall within-population genetic diversity parameters were lower in subalpine larch (A = 3.2; A(P) = 3.6; H(E) = 0.418) than in western larch (A(P) = 5.51; H(E) = 0.580), a pattern that is likely related to historical or demographic factors. No evidence of interspecific hybridization was observed. Significantly more population differentiation (theta = 0.15; R(ST) = 0.07), consistent with more restricted gene flow, was observed for subalpine larch as compared to western larch (theta = 0.05; R(ST) = 0.04). Under the assumption of an infinite allele mutation model, 12 of the 19 subalpine larch populations showed signs of deviation from the mutation-drift equilibrium, which suggests Holocene population bottlenecks and fluctuations in effective population size for this species. None of the western larch populations deviated significantly from the mutation-drift equilibrium. For both species, Mantel's test revealed a significant positive relationship between geographical and genetic distances indicative of isolation by distance. A similar geographical structure was detected in both species, suggesting at least two genetically distinct glacial populations in each species. The various implications for gene conservation are discussed.


Assuntos
Variação Genética , Genética Populacional , Larix/genética , Repetições de Microssatélites , Evolução Biológica , Canadá
16.
Mol Ecol ; 15(10): 2787-800, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16911200

RESUMO

Chihuahua spruce (Picea chihuahuana Martínez) is a montane subtropical conifer endemic to the Sierra Madre Occidental in northwestern México. Range-wide variation was investigated using maternally inherited mitochondrial (mtDNA) and paternally inherited chloroplast (cpDNA) DNA markers. Among the 16 mtDNA regions analysed, only two mitotypes were detected, while the study of six cpDNA microsatellite markers revealed eight different chlorotypes. The average cpDNA diversity (H = 0.415) was low but much higher than that for mtDNA (H = 0). The distribution of mitotypes revealed two clear nonoverlapping areas (G(ST) = N(ST) = 1), one including northern populations and the second one including the southern and central stands, suggesting that these two regions may represent different ancestral populations. The cpDNA markers showed lower population differentiation (G(ST) = 0.362; R(ST) = 0.230), implying that the two ancestral populations continued to exchange pollen after their initial geographic separation. A lack of a phylogeographic structure was revealed by different spatial analyses of cpDNA (G(ST) > R(ST); and samova), and reduced cpDNA gene flow was noted among populations (Nm = 0.873). Some stands deviated significantly from the mutation-drift equilibrium, suggesting recent bottlenecks. Altogether, these various trends are consistent with the hypothesis of a population collapse during the Holocene warming and suggest that most of the modern P. chihuahuana populations are now effectively isolated with their genetic diversity essentially modelled by genetic drift. The conservation efforts should focus on most southern populations and on the northern and central stands exhibiting high levels of genetic diversity. Additional mtDNA sequence analysis confirmed that P. martinezii (Patterson) is not conspecific with P. chihuahuana, and thus deserves separate conservation efforts.


Assuntos
DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Picea/genética , Sequência de Bases , Haplótipos , História Antiga , México , Dados de Sequência Molecular , Polimorfismo Genético , Dinâmica Populacional
17.
Mol Ecol ; 14(11): 3497-512, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16156818

RESUMO

Jack pine (Pinus banksiana Lamb.) is a broadly distributed North American conifer and its current range was covered by the Laurentian ice sheet during the last glacial maximum. To infer about the history and postglacial colonization of this boreal species, range-wide genetic variation was assessed using a new and highly variable minisatellite-like marker of the mitochondrial genome. Among the 543 trees analysed, 14 distinct haplotypes were detected, which corresponded to different repeat numbers of the 32-nucleotide minisatellite-like motif. Several haplotypes were rare with limited distribution, suggesting recent mutation events during the Holocene. At the population level, an average of 2.6 haplotypes and a mean haplotype diversity (H) of 0.328 were estimated. Population subdivision of genetic diversity was quite high with G(ST) and R(ST) values of 0.569 and 0.472, respectively. Spatial analyses identified three relatively homogeneous groups of populations presumably representative of genetically distinct glacial populations, one west and one east of the Appalachian Mountains in the United States and a third one presumably on the unglaciated northeastern coastal area in Canada. These results indicate the significant role of the northern part of the US Appalachian Mountains as a factor of vicariance during the ice age. A fourth distinct group of populations was observed in central Québec where the continental glacier retreated last. It included populations harbouring haplotypes present into the three previous groups, and it had higher level of haplotype diversity per population (H = 0.548) and lower population differentiation (G(ST) = 0.265), which indicates a zone of suture or secondary contact between the migration fronts of the three glacial populations. Introgression from Pinus contorta Dougl. var. latifolia Engelm. was apparent in one western population from Alberta. Altogether, these results indicate that the mitochondrial DNA variation of jack pine is geographically highly structured and it correlates well with large-scale patterns emerging from recent phylogeographical studies of other tree boreal species in North America.


Assuntos
Demografia , Variação Genética , Repetições Minissatélites/genética , Filogenia , Pinus/genética , Sequência de Bases , Primers do DNA , DNA Mitocondrial/genética , Geografia , Haplótipos/genética , Modelos Genéticos , Dados de Sequência Molecular , América do Norte , Dinâmica Populacional , Análise de Sequência de DNA
18.
Genetics ; 171(4): 1951-62, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16118197

RESUMO

Variation in mitochondrial DNA was surveyed at four gene loci in and around the zone of contact between two naturally hybridizing conifers, black spruce (Picea mariana) and red spruce (P. rubens) in northeastern North America. Most of the mtDNA diversity of these species was found in populations next to or into the zone of contact, where some individuals bore rare mitotypes intermediate between the common mitotypes observed in the allopatric areas of each species. Sequence analysis and tests for mtDNA recombination point to this phenomenon, rather than to recurrent mutation, as the most tenable hypothesis for the origin of these rare mitotypes. From the 10 mitotypes observed, at least 4 would be the product of recombination between 4 of the 5 putative ancestral mitotypes. Tests for cytonuclear disequilibrium and geographical structure of the putative recombinant mitotypes suggest that mtDNA recombination is not frequent and relatively recent on the geological time scale. mtDNA recombination would have been promoted by transient heteroplasmy due to leakage of paternal mtDNA since the Holocene secondary contact between the two species.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Hibridização Genética , Pinus/genética , Recombinação Genética/genética , Sequência de Bases , Canadá , Geografia , Haplótipos/genética , Dados de Sequência Molecular , New England , Análise de Sequência de DNA
19.
Mol Ecol ; 13(9): 2735-47, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15315685

RESUMO

Range-wide genetic variation of black spruce (Picea mariana) was studied using polymerase chain reaction-random fragment length polymorphism markers of the mitochondrial genome. Four polymorphic mitochondrial DNA (mtDNA) loci were surveyed and two or three alleles were detected at each locus, resulting in 10 multilocus mtDNA types or mitotypes. A significant subdivision of population genetic diversity was detected (GST = 0.671; NST = 0.726), suggesting low levels of gene flow among populations. The distribution of mitotypes was not random (NST > GST; P < 0.05) and revealed four partially overlapping zones, presumably representative of different glacial populations. Comparison of the genetic structure derived from mtDNA markers and the colonization paths previously deduced from the fossil and pollen records allow us to infer at least three southern and one northeastern glacial populations for black spruce. The patterns revealed in this study suggest that black spruce shares its biogeographical history with other forest-associated North American species.


Assuntos
Clima , Meio Ambiente , Variação Genética , Genética Populacional , Picea/genética , Canadá , Primers do DNA , DNA Mitocondrial/genética , Frequência do Gene , Geografia , Polimorfismo de Fragmento de Restrição , Dinâmica Populacional
20.
Am J Bot ; 90(12): 1801-6, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21653356

RESUMO

Mitochondrial DNA (mtDNA) markers were used to assess the genetic diversity in allopatric populations of black spruce (Picea mariana [Mill.] BSP) and red spruce (P. rubens Sarg.). Patterns of mitochondrial haplotypes (mitotypes) were strikingly different between the two species. All mtDNA markers surveyed were polymorphic in black spruce, revealing four different mitotypes and high levels of mtDNA diversity (P(p) = 100%, A = 2.0, H = 0.496). In contrast, populations of red spruce had only two mitotypes and harbored low levels of ggenetic diversity (P(p) = 13.2%, A = 1.1, H = 0.120). When the southernmost allopatric populations of red spruce were considered, only one mitotype was detected. As previously reported for nuclear gene loci, the diversity observed for mtDNA in red spruce was a subset of that found in black spruce. Comparison of present and previously published data supports the hypothesis of a recent progenitor-derivative relationship between these species, red spruce presumably being derived by allopatric speciation of an isolated population of black spruce during the Pleistocene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA