Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38603459

RESUMO

Beneficial polyphenols in apples can reach the stomach as complexes formed with salivary proteins. The present study aimed at documenting the interactions between salivary proteins and cider apple polyphenols and the fate of complexes during gastric digestion. A polyphenolic extract was mixed with human saliva, and interactions were characterized by analyzing proteins and polyphenols in the insoluble and soluble fractions of the mixtures, before and after in vitro gastric digestion. Results confirmed that proline-rich proteins can efficiently precipitate polyphenols and suggested that two zinc-binding proteins can also form insoluble complexes with polyphenols. The classes of polyphenols involved in such complexes depended on the polyphenol-to-protein ratio. In vitro gastric digestion led to extensive proteolysis of salivary proteins, and we formulate the hypothesis that the resulting peptides can interact with and precipitate some procyanidins. Saliva may therefore partly modulate the bioaccessibility of at least procyanidins in the gastric compartment.

2.
BMC Microbiol ; 23(1): 364, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008714

RESUMO

BACKGROUND: Probiotics have gained attention for their potential maintaining gut and immune homeostasis. They have been found to confer protection against pathogen colonization, possess immunomodulatory effects, enhance gut barrier functionality, and mitigate inflammation. However, a thorough understanding of the unique mechanisms of effects triggered by individual strains is necessary to optimize their therapeutic efficacy. Probiogenomics, involving high-throughput techniques, can help identify uncharacterized strains and aid in the rational selection of new probiotics. This study evaluates the potential of the Escherichia coli CEC15 strain as a probiotic through in silico, in vitro, and in vivo analyses, comparing it to the well-known probiotic reference E. coli Nissle 1917. Genomic analysis was conducted to identify traits with potential beneficial activity and to assess the safety of each strain (genomic islands, bacteriocin production, antibiotic resistance, production of proteins involved in host homeostasis, and proteins with adhesive properties). In vitro studies assessed survival in gastrointestinal simulated conditions and adhesion to cultured human intestinal cells. Safety was evaluated in BALB/c mice, monitoring the impact of E. coli consumption on clinical signs, intestinal architecture, intestinal permeability, and fecal microbiota. Additionally, the protective effects of both strains were assessed in a murine model of 5-FU-induced mucositis. RESULTS: CEC15 mitigates inflammation, reinforces intestinal barrier, and modulates intestinal microbiota. In silico analysis revealed fewer pathogenicity-related traits in CEC15, when compared to Nissle 1917, with fewer toxin-associated genes and no gene suggesting the production of colibactin (a genotoxic agent). Most predicted antibiotic-resistance genes were neither associated with actual resistance, nor with transposable elements. The genome of CEC15 strain encodes proteins related to stress tolerance and to adhesion, in line with its better survival during digestion and higher adhesion to intestinal cells, when compared to Nissle 1917. Moreover, CEC15 exhibited beneficial effects on mice and their intestinal microbiota, both in healthy animals and against 5FU-induced intestinal mucositis. CONCLUSIONS: These findings suggest that the CEC15 strain holds promise as a probiotic, as it could modulate the intestinal microbiota, providing immunomodulatory and anti-inflammatory effects, and reinforcing the intestinal barrier. These findings may have implications for the treatment of gastrointestinal disorders, particularly some forms of diarrhea.


Assuntos
Proteínas de Escherichia coli , Mucosite , Probióticos , Camundongos , Humanos , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Inflamação , Probióticos/uso terapêutico
3.
Food Funct ; 14(20): 9377-9390, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37789767

RESUMO

It is still unclear if changes in protein digestibility and absorption kinetics in old age may affect the anabolic effect of high-protein foods. The objective of this study was to investigate the digestion of two high-protein (10% w/w) dairy products in vitro: a fermented dairy product formulated with a ratio of whey proteins to caseins of 80 to 20% (WBD) and a Skyr containing mainly caseins. The new static in vitro digestion model adapted to the general older adult population (≥65 years) proposed by the INFOGEST international consortium was implemented to investigate the digestion of these products and compared with the standard version of the protocol. Kinetics of proteolysis was compared between both models for each product, in the gastric and intestinal phases of digestion. Protein hydrolysis was studied by the OPA method, SDS-PAGE, and LC-MS/MS, and amino acids were quantified by HPLC. Protein hydrolysis by pepsin was slower with the older adult model than with the young adult model, and consequently, in spite of a longer gastric phase duration, the degree of proteolysis (DH) at the end of the gastric phase was lower. Two different scenarios were observed depending on the type of dairy product studied: -10 and -40% DH for Skyr and WBD, respectively. In the intestinal phase, lower concentrations of free leucine were observed in older adult conditions (approx. -10%), but no significant differences in proteolysis were observed overall between the models. Therefore, the digestion conditions used influenced significantly the rate and extent of proteolysis in the gastric phase but not in the intestinal phase.


Assuntos
Caseínas , Espectrometria de Massas em Tandem , Caseínas/metabolismo , Cromatografia Líquida , Trato Gastrointestinal/metabolismo , Laticínios , Digestão
4.
Microlife ; 4: uqad029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324655

RESUMO

Bacterial extracellular vesicles (EVs) are natural lipidic nanoparticles implicated in intercellular communication. Although EV research focused mainly on pathogens, the interest in probiotic-derived EVs is now rising. One example is Propionibacterium freudenreichii, which produces EVs with anti-inflammatory effects on human epithelial cells. Our previous study with P. freudenreichii showed that EVs purified by size exclusion chromatography (SEC) displayed variations in protein content according to bacterial growth conditions. Considering these content variations, we hypothesized that a comparative proteomic analysis of EVs recovered in different conditions would elucidate whether a representative vesicular proteome existed, possibly providing a robust proteome dataset for further analysis. Therefore, P. freudenreichii was grown in two culture media, and EVs were purified by sucrose density gradient ultracentrifugation (UC). Microscopic and size characterization confirmed EV purification, while shotgun proteomics unveiled that they carried a diverse set of proteins. A comparative analysis of the protein content of UC- and SEC-derived EVs, isolated from cultures either in UF (cow milk ultrafiltrate medium) or YEL (laboratory yeast extract lactate medium), showed that EVs from all these conditions shared 308 proteins. This EV core proteome was notably enriched in proteins related to immunomodulation. Moreover, it showed distinctive features, including highly interacting proteins, compositional biases for some specific amino acids, and other biochemical parameters. Overall, this work broadens the toolset for the purification of P. freudenreichii-derived EVs, identifies a representative vesicular proteome, and enumerates conserved features in vesicular proteins. These results hold the potential for providing candidate biomarkers of purification quality, and insights into the mechanisms of EV biogenesis and cargo sorting.

5.
Food Res Int ; 169: 112883, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254331

RESUMO

Infant formula (IF) is a complex matrix requiring numerous ingredients and processing steps. The objective was to understand how the quality of protein ingredients impacts IF structure and, in turn, their kinetics of digestion. Four powdered IFs (A/B/C/D), based on commercial whey protein (WP) ingredients, with different protein denaturation levels and composition (A/B/C), and on caseins with different supramolecular organisations (C/D), were produced at a semi-industrial level after homogenization and spray-drying. Once reconstituted in water (13 %, wt/wt), the IF microstructure was analysed with asymmetrical flow field-flow fractionation coupled with multi-angle light scattering and differential refractometer, transmission electron microscopy and electrophoresis. The rehydrated IFs were subjected to simulated infant in vitro dynamic digestion (DIDGI®). Digesta were regularly sampled to follow structural changes (confocal microscopy, laser-light scattering) and proteolysis (OPA, SDS-PAGE, LC-MS/MS, cation-exchange chromatography). Before digestion, different microstructures were observed among IFs. IF-A, characterized by more denatured WPs, presented star-shaped mixed aggregates, with protein aggregates bounded to casein micelles, themselves adsorbed at the fat droplet interface. Non-micellar caseins, brought by non-micellar casein powder (IF-D) underwent rearrangement and aggregation at the interface of flocculated fat droplets, leading to a largely different microstructure of IF emulsion, with large aggregates of lipids and proteins. During digestion, IF-A more digested (degree of proteolysis + 16 %) at 180 min of intestinal phase than IF-C/D. The modification of the supramolecular organisation of caseins implied different kinetics of peptide release derived from caseins during the gastric phase (more abundant at G80 for IF-D). Bioactive peptide release kinetics were also different during digestion with IF-C presenting a maximal abundance for a large proportion of them. Overall, the present study highlights the importance of the structure and composition of the protein ingredients (WPs and caseins) selected for IF formulation on the final IF structure and, in turn, on proteolysis. Whether it has some physiological consequences remains to be investigated.


Assuntos
Caseínas , Fórmulas Infantis , Humanos , Caseínas/química , Proteólise , Fórmulas Infantis/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos/metabolismo , Digestão
6.
Food Res Int ; 169: 112887, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254335

RESUMO

Mass spectrometry has become the technique of choice for the assessment of a high variety of molecules in complex food matrices. It is best suited for monitoring the evolution of digestive processes in vivo and in vitro. However, considering the variety of equipment available in different laboratories and the diversity of sample preparation methods, instrumental settings for data acquisition, statistical evaluations, and interpretations of results, it is difficult to predict a priori the ideal parameters for optimal results. The present work addressed this uncertainty by executing an inter-laboratory study with samples collected during in vitro digestion and presenting an overview of the state-of-the-art mass spectrometry applications and analytical capabilities available for studying food digestion. Three representative high-protein foods - skim milk powder (SMP), cooked chicken breast and tofu - were digested according to the static INFOGEST protocol with sample collection at five different time points during gastric and intestinal digestion. Ten laboratories analysed all digesta with their in-house equipment and applying theirconventional workflow. The compiled results demonstrate in general, that soy proteins had a slower gastric digestion and the presence of longer peptide sequences in the intestinal phase compared to SMP or chicken proteins, suggesting a higher resistance to the digestion of soy proteins. Differences in results among the various laboratories were attributed more to the peptide selection criteria than to the individual analytical platforms. Overall, the combination of mass spectrometry techniques with suitable methodological and statistical approaches is adequate for contributing to the characterisation of the recently defined digestome.


Assuntos
Digestão , Proteínas de Soja , Animais , Proteínas de Soja/metabolismo , Leite/química , Peptídeos/análise , Espectrometria de Massas
7.
Food Res Int ; 162(Pt B): 112112, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461347

RESUMO

This study compared the bioaccessibility of docosahexaenoic acid (DHA) provided encapsulated or unencapsulated within a food matrix. DHA oil was composed of DHA-enriched triacylglycerols prepared as Pickering emulsion by encapsulation with heat-denatured whey protein isolate particles and then incorporated into homogenized liquid egg to get omelets. The effect of encapsulation was analyzed by using a static in vitro digestion model of the adult, which digestive fluid enzymes have also been characterized by proteomics. First, the size of lipid droplets was shown to be smaller and uniformly dispersed in omelets with encapsulated-DHA oil compared to non-encapsulated-DHA oil. Distribution of droplets was more regular with encapsulated-DHA oil as well. As a consequence, we showed that encapsulating DHA oil promoted the hydrolysis by pancreatic lipase during the intestinal phase. A larger proportion of DHA enriched-triacylglycerols was hydrolyzed after two hours of digestion, leading to a greater release in free DHA. Thus, only 32% of DHA remained esterified in the triacylglycerols with encapsulated-DHA oil, compared to 43% with non-encapsulated-DHA oil. The DHA in free form ultimately represented 52% of the total DHA with encapsulated-DHA oil, compared to 40% with non-encapsulated-DHA oil. Finally, our results showed that as much DHA was released after one hour of intestinal digestion when the DHA oil was encapsulated as after two hours when the DHA oil was not encapsulated. Therefore, DHA bioaccessibility was significantly improved by encapsulation of DHA oil in omelets.


Assuntos
Ácidos Docosa-Hexaenoicos , Temperatura Alta , Adulto , Humanos , Proteínas do Soro do Leite , Emulsões , Triglicerídeos
8.
Data Brief ; 45: 108653, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36426081

RESUMO

The article presents a proteomic dataset generated by a comparative analysis, using gel-free nanoLC-MS/MS, of the cellular proteome of Lactobacillus delbrueckii subsp. bulgaricus, a yogurt starter, when cultivated in soy milk versus in cow milk. The CIRM-BIA1592 strain was cultivated in the aqueous phase of soy milk, or of cow milk. Whole-cell proteins were extracted, trypsinolyzed and analyzed by nano LC-MS/MS, prior to identification and to classification by function using the X!Tandem pipeline software and the proteomic data from NCBI.nlm.nigh.gov. Quantification of the proteins was moreover performed to evidence changes in their expression, depending on the culture medium. Data are available via ProteomeXchange with the identifier PXD033905 (http://www.proteomexchange.org/). This article is related to the research article entitled "The stressing life of Lactobacillus delbrueckii subsp. bulgaricus in soy milk", by G.Jan et al. in Food Microbiology, 2022. This proteomic differential analysis indeed revealed major modulation of the stress proteome, with many stress proteins upregulated in the soy environment.

9.
Microorganisms ; 10(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36144410

RESUMO

Staphylococcus aureus, a major opportunistic pathogen in humans, produces extracellular vesicles (EVs) that are involved in cellular communication, the delivery of virulence factors, and modulation of the host immune system response. However, to date, the impact of culture conditions on the physicochemical and functional properties of S. aureus EVs is still largely unexplored. Here, we use a proteomic approach to provide a complete protein characterization of S. aureus HG003, a NCTC8325 derivative strain and its derived EVs under four growth conditions: early- and late-stationary growth phases, and in the absence and presence of a sub-inhibitory concentration of vancomycin. The HG003 EV protein composition in terms of subcellular localization, COG and KEGG categories, as well as their relative abundance are modulated by the environment and differs from that of whole-cell (WC). Moreover, the environmental conditions that were tested had a more pronounced impact on the EV protein composition when compared to the WC, supporting the existence of mechanisms for the selective packing of EV cargo. This study provides the first general picture of the impact of different growth conditions in the proteome of S. aureus EVs and its producing-cells and paves the way for future studies to understand better S. aureus EV production, composition, and roles.

10.
Foods ; 11(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36010429

RESUMO

Hydrolysis of proteins leads to the release of bioactive peptides with positive impact on human health. Peptides exhibiting antihypertensive properties (i.e., inhibition of angiotensin-I-converting enzyme) are commonly found in whey protein hydrolysates made with enzymes of animal, plant or microbial origin. However, bioactive properties can be influenced by processing conditions and gastrointestinal digestion. In this study, we evaluated the impact of three plant enzymes (papain, bromelain and ficin) in the manufacture of whey protein hydrolysates with varying level of pH, enzyme-to-substrate ratio and time of hydrolysis, based on a central composite design, to determine the degree of hydrolysis and antihypertensive properties. Hydrolysates made on laboratory scales showed great variation in the type of enzyme used, their concentrations and the pH level of hydrolysis. However, low degrees of hydrolysis in papain and bromelain treatments were associated with increased antihypertensive properties, when compared to ficin. Simulated gastrointestinal digestion performed for selected hydrolysates showed an increase in antihypertensive properties of hydrolysates made with papain and bromelain, which was probably caused by further release of peptides. Several peptides with reported antihypertensive properties were found in all treatments. These results suggest plant enzymes used in this study can be suitable candidates to develop ingredients with bioactive properties.

11.
Front Nutr ; 9: 888179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782920

RESUMO

Reducing salt intake can mitigate the prevalence of metabolic disorders. In fermented foods such as cheeses, however, salt can impact the activity of desirable and undesirable microorganisms and thus affect their properties. This study aimed to investigate the effect of salt level on Swiss-type cheese ripening. Since proteolysis is a major event in cheese ripening, three strains of Lactobacillus helveticus were selected on the cell-envelope proteinase (CEP) they harbor. Their proteolytic activity on caseins was studied at six salt levels (0-4.5%) at pH 7.5 and 5.2. Swiss-type cheeses were manufactured at regular, increased, and decreased salt concentrations, and characterized for their composition and techno-functional properties. L. helveticus strains possessed and expressed the expected CEPs, as shown by PCR and shaving experiments. The two strains of L. helveticus that possessed at least the CEP PrtH3 showed the greatest proteolytic activity. Casein hydrolysis in vitro was similar or higher at pH 5.2, i.e., cheese pH, compared to pH 7.5, and slightly decreased at the highest salt concentrations (3.0 and 4.4%). Similarly, in ripened cheeses, these L. helveticus strains showed 1.5-2.4 more proteolysis, compared to the cheeses manufactured without L. helveticus. Regarding the salt effect, the 30% salt-reduced cheeses showed the same proteolysis as regular cheeses, while the upper-salted cheeses showed a slight decrease (-14%) of the non-protein fraction. The microbial and biochemical composition remained unchanged in the 30%-reduced cheeses. In contrast, Propionibacterium freudenreichii, used as ripening bacteria in Swiss cheese, grew more slowly in upper-salted (1.14%, w/w) cheeses, which induced concomitant changes in the metabolites they consumed (-40% lactic acid) or produced (fivefold decrease in propionic acid). Some cheese techno-functional properties were slightly decreased by salt reduction, as extrusion (-17%) and oiling off (-4%) compared to regular cheeses. Overall, this study showed that a 30% salt reduction has little impact in the properties of Swiss-type cheeses, and that starters and ripening cultures strains could be chosen to compensate changes induced by salt modifications in Swiss-type and other hard cheeses.

12.
Food Microbiol ; 106: 104042, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690436

RESUMO

Lactobacillus delbrueckii subsp. bulgaricus is a beneficial lactic acid bacterium and constitutes one of the most used, and thus consumed, dairy starters, worldwide. This homofermentative bacterium was the first lactobacillus described and is involved in the fermentation of yogurt and of diverse other fermented products, including cheeses. It has a long history of safe use, as well as documented probiotic lato sensu effects, including alleviation of lactose intolerance. Plant-based fermented products presently experience a considerable development, as a result of evolution of consumers' habits, in a general context of food transition. This requires research and development, and thus scientific knowledge, to allow such transition, including the development of fermented soy milks. These last indeed offer an alternative source of live and active bacteria. The yogurt starters L. delbrueckii subsp. bulgaricus, together with Streptococcus thermophilus, have been implemented to generate yogurt-type fermented soy milks worldwide. While the adaptation of these starters to the dairy environment has been extensively studied, little is known about L. delbrueckii adaptation to the soy environment. We therefore investigated its adaptation to soy milk and compared it to cow's milk. Surprisingly, it did not grow in soy milk, neither alone, nor in co-culture with S. thermophilus. Acidification of soy milk was however faster in the presence of both species. In order to deepen such adaptation, we then compared L. delbrueckii growth and survival in soy milk ultrafiltrate (SUF, the aqueous phase of soy milk) and compared it to cow's milk ultrafiltrate (MUF, the aqueous phase of cow milk). This comparison revealed major differences in terms of cell morphology and proteome composition. Lactobacilli appeared deformed and segmented in soy. Major differences in both the surface and the cellular proteome indicated upregulation of stress proteins, yet downregulation of cell cycle and division machinery. Altogether, these results suggest that soy milk may be a stressing environment for the yogurt starter L. delbrueckii subsp. bulgaricus.


Assuntos
Lactobacillus delbrueckii , Leite de Soja , Fermentação , Lactobacillus/metabolismo , Lactobacillus delbrueckii/metabolismo , Proteoma , Streptococcus thermophilus/metabolismo , Iogurte/microbiologia
13.
Food Chem ; 369: 130998, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34507088

RESUMO

High Temperature-Short Time (HTST) pasteurization was proposed as an alternative to Holder pasteurization (HOP) to increase the retention of specific human milk (HM) bioactive proteins. The present study explored whether HTST and HOP differently affect peptide release during simulated preterm infant gastrointestinal digestion. Raw (RHM), HOP- and HTST- pasteurized HM were digested using an in vitro dynamic system, and the identified peptides were analyzed by mass spectrometry and multivariate statistics. Before digestion, 158 peptides were identified in either RHM, HTST- or HOP- HM, mostly (84.4%) originating from ß-casein (CASB). During gastric digestion, HOP-HM presented a greater number and more abundant specific CASB peptides. A delayed release of peptides was observed in RHM during the intestinal phase, with respect to both pasteurized HM. Although limited to gastric digestion, the HM peptidomic profile differed according to the pasteurization type, and the pattern of the HTST peptides showed a greater similarity with RHM.


Assuntos
Leite Humano , Pasteurização , Animais , Digestão , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Leite , Peptídeos , Temperatura
14.
Food Chem ; 362: 130098, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34090041

RESUMO

The specificity of pepsin, the major protease of gastric digestion, has been previously investigated, but only regarding the primary sequence of the protein substrates. The present study aimed to consider in addition physicochemical and structural characteristics, at the molecular and sub-molecular scales. For six different proteins submitted to in vitro gastric digestion, the peptide bonds cleaved were determined from the peptides released and identified by LC-MS/MS. An original statistical approach, based on propensity scores calculated for each amino acid residue on both sides of the peptide bonds, concluded that preferential cleavage occurred after Leu and Phe, and before Ile. Moreover, reliable statistical models developed for predicting peptide bond cleavage, highlighted the predominant role of the amino acid residues at the N-terminal side of the peptide bonds, up to the seventh position (P7 and P7'). The significant influence of hydrophobicity, charge and structural constraints around the peptide bonds was also evidenced.


Assuntos
Pepsina A/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Aminoácidos , Cromatografia Líquida , Endopeptidases/metabolismo , Modelos Estatísticos , Peptídeos/metabolismo , Proteínas/química , Proteólise , Especificidade por Substrato , Espectrometria de Massas em Tandem
15.
J Agric Food Chem ; 69(7): 2118-2128, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33561347

RESUMO

A recent work revealed that egg white (EW) at 45 °C exhibits powerful bactericidal activity against S. enterica serovar Enteritidis, which is surprisingly little affected by removal of the >10 kDa EW proteins. Here, we sought to identify the major EW factors responsible for this bactericidal activity by fractionating EW using ultrafiltration and nanofiltration and by characterizing the physicochemical and antimicrobial properties of the resulting fractions. In particular, 22 peptides were identified by nano-LC/MS-MS and the bactericidal activities of representative peptides (with predicted antimicrobial activity) were further assessed. Two peptides (FVPPVQR and GDPSAWSWGAEAHS) were found to be bactericidal against S. enterica serovar Enteritidis at 45 °C when provided in an EW environment. Nevertheless, these peptides contribute only part of this bactericidal activity, suggesting other, yet to be determined, antimicrobial factors.


Assuntos
Salmonelose Animal , Salmonella enteritidis , Animais , Galinhas , Proteínas do Ovo , Clara de Ovo , Proteínas Citotóxicas Formadoras de Poros
16.
Front Microbiol ; 12: 793136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087496

RESUMO

Lactic acid bacteria (LAB) are responsible for the sanitary, organoleptic, and health properties of most fermented products. Positive interactions between pairs of LAB strains, based on nitrogen dependencies, were previously demonstrated. In a chemically defined medium, using milk and lupin proteins as sole nitrogen source, two proteolytic strains were able to sustain the growth of non-proteolytic strains, but one did not. The objective of the present study was, thus, to determine which specific peptides were implicated in the positive interactions observed. Peptides produced and involved in the bacterial interactions were quantified using tandem mass spectrometry (LC-MS/MS). About 2,000 different oligopeptides ranging from 6 to more than 50 amino acids in length were identified during the time-course of the experiment. We performed a clustering approach to decipher the differences in peptide production during fermentation by the three proteolytic strains tested. We also performed sequence alignments on parental proteins and identified the cleavage site profiles of the three bacterial strains. Then, we characterized the peptides that were used by the non-proteolytic strains in monocultures. Hydrophobic and branched-chain amino acids within peptides were identified as essential in the interactions. Ultimately, better understanding how LAB can positively interact could be useful in multiple food-related fields, e.g., production of fermented food products with enhanced functional properties, or fermentation of new food matrices.

17.
Appl Environ Microbiol ; 87(4)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310709

RESUMO

Propionibacterium freudenreichii is a probiotic Gram-positive bacterium with promising immunomodulatory properties. It modulates regulatory cytokines, mitigates the inflammatory response in vitro and in vivo These properties were initially attributed to specific bacterial surface proteins. Recently, we showed that extracellular vesicles (EVs) produced by P. freudenreichii CIRM-BIA129 mimic the immunomodulatory features of parent cells in vitro (i.e. modulating NF-κB transcription factor activity and IL-8 release) which underlies the role of EVs as mediators of the probiotic effects of the bacterium. The modulation of EV properties, and particularly of those with potential therapeutic applications such as the EVs produced by the probiotic P. freudenreichii, is one of the challenges in the field to achieve efficient yields with the desired optimal functionality. Here we evaluated whether the culture medium in which the bacteria are grown could be used as a lever to modulate the protein content and hence the properties of P. freudenreichii CIRM-BIA129 EVs. The physical, biochemical and functional properties of EVs produced from cells cultivated on laboratory Yeast Extract Lactate (YEL) medium and cow milk ultrafiltrate (UF) medium were compared. UF-derived EVs were more abundant, smaller in diameter and displayed more intense anti-inflammatory activity than YEL-derived EVs. Furthermore, the growth media modulated EV content in terms of both the identities and abundances of their protein cargos, suggesting different patterns of interaction with the host. Proteins involved in amino acid metabolism and central carbon metabolism were modulated, as were the key surface proteins mediating host-propionibacteria interactions.Importance Extracellular vesicles (EVs) are cellular membrane-derived nanosized particles that are produced by most cells in all three kingdoms of life. They play a pivotal role in cell-cell communication through their ability to transport bioactive molecules from donor to recipient cells. Bacterial EVs are important factors in host-microbe interactions. Recently we have shown that EVs produced by the probiotic P. freudenreichii exhibited immunomodulatory properties. We evaluate here the impact of environmental conditions, notably culture media, on P. freudenreichii EV production and function. We show that EVs display considerable differences in protein cargo and immunomodulation depending on the culture medium used. This work offers new perspectives for the development of probiotic EV-based molecular delivery systems, and reinforces the optimization of growth conditions as a tool to modulate the potential therapeutic applications of EVs.

18.
Front Microbiol ; 11: 549027, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335514

RESUMO

Propionibacterium freudenreichii is a beneficial bacterium that modulates the gut microbiota, motility and inflammation. It is traditionally consumed within various fermented dairy products. Changes to consumer habits in the context of food transition are, however, driving the demand for non-dairy fermented foods, resulting in a considerable development of plant-based fermented products that require greater scientific knowledge. Fermented soymilks, in particular, offer an alternative source of live probiotics. While the adaptation of lactic acid bacteria (LAB) to such vegetable substrates is well documented, little is known about that of propionibacteria. We therefore investigated the adaptation of Propionibacterium freudenreichii to soymilk by comparison to cow's milk. P. freudenreichii grew in cow's milk but not in soymilk, but it did grow in soymilk when co-cultured with the lactic acid bacterium Lactobacillus plantarum. When grown in soymilk ultrafiltrate (SUF, the aqueous phase of soymilk), P. freudenreichii cells appeared thinner and rectangular-shaped, while they were thicker and more rounded in cow's milk utltrafiltrate (MUF, the aqueous phase of cow milk). The amount of extractable surface proteins (SlpA, SlpB, SlpD, SlpE) was furthermore reduced in SUF, when compared to MUF. This included the SlpB protein, previously shown to modulate adhesion and immunomodulation in P. freudenreichii. Tolerance toward an acid and toward a bile salts challenge were enhanced in SUF. By contrast, tolerance toward an oxidative and a thermal challenge were enhanced in MUF. A whole-cell proteomic approach further identified differential expression of 35 proteins involved in amino acid transport and metabolism (including amino acid dehydrogenase, amino acid transporter), 32 proteins involved in carbohydrate transport and metabolism (including glycosyltransferase, PTS), indicating metabolic adaptation to the substrate. The culture medium also modulated the amount of stress proteins involved in stress remediation: GroEL, OpuCA, CysK, DnaJ, GrpE, in line with the modulation of stress tolerance. Changing the fermented substrate may thus significantly affect the fermentative and probiotic properties of dairy propionibacteria. This needs to be considered when developing new fermented functional foods.

19.
Foods ; 9(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036372

RESUMO

For many years, it was believed that only amino acids, dipeptides, and tripeptides could be absorbed and thus reach the bloodstream. Nowadays, the bioavailability of oligopeptides is also considered possible, leading to new research. This pilot study investigates the activity of brush border enzymes on undigested whey protein hydrolysate (WPH) and on simulated intestinal digested (ID) whey hydrolysate and the subsequent absorption of resultant peptides through the proximal jejunum of a 7-week old piglet setup in an Ussing chamber model. Amongst all samples taken, 884 oligopeptides were identified. The brush border peptidase activity was intense in the first 10 min of the experiment, producing several new peptides in the apical compartment. With respect to the ID substrate, 286 peptides were detected in the basolateral compartment after 120 min of enzyme activity, originating from ß-lactoglobulin (60%) and ß-casein (20%). Nevertheless, only 0.6 to 3.35% of any specific peptide could pass through the epithelial barrier and thus reach the basolateral compartment. This study demonstrates transepithelial jejunum absorption of whey oligopeptides in an ex vivo model. It also confirmed the proteolytic activity of brush border enzymes on these oligopeptides, giving birth to a myriad of new bioactive peptides available for absorption.

20.
Front Microbiol ; 11: 1544, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733422

RESUMO

Extracellular vesicles (EVs) are nanometric spherical structures involved in intercellular communication, whose production is considered to be a widespread phenomenon in living organisms. Bacterial EVs are associated with several processes that include survival, competition, pathogenesis, and immunomodulation. Among probiotic Gram-positive bacteria, some Propionibacterium freudenreichii strains exhibit anti-inflammatory activity, notably via surface proteins such as the surface-layer protein B (SlpB). We have hypothesized that, in addition to surface exposure and secretion of proteins, P. freudenreichii may produce EVs and thus export immunomodulatory proteins to interact with the host. In order to demonstrate their production in this species, EVs were purified from cell-free culture supernatants of the probiotic strain P. freudenreichii CIRM-BIA 129, and their physicochemical characterization, using transmission electron microscopy and nanoparticle tracking analysis (NTA), revealed shapes and sizes typical of EVs. Proteomic characterization showed that EVs contain a broad range of proteins, including immunomodulatory proteins such as SlpB. In silico protein-protein interaction predictions indicated that EV proteins could interact with host proteins, including the immunomodulatory transcription factor NF-κB. This potential interaction has a functional significance because EVs modulate inflammatory responses, as shown by IL-8 release and NF-κB activity, in HT-29 human intestinal epithelial cells. Indeed, EVs displayed an anti-inflammatory effect by modulating the NF-κB pathway; this was dependent on their concentration and on the proinflammatory inducer (LPS-specific). Moreover, while this anti-inflammatory effect partly depended on SlpB, it was not abolished by EV surface proteolysis, suggesting possible intracellular sites of action for EVs. This is the first report on identification of P. freudenreichii-derived EVs, alongside their physicochemical, biochemical and functional characterization. This study has enhanced our understanding of the mechanisms associated with the probiotic activity of P. freudenreichii and identified opportunities to employ bacterial-derived EVs for the development of bioactive products with therapeutic effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...