Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 47(19): 11241-8, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23941581

RESUMO

The Department of Defense (DoD) is faced with the daunting task of possible remediation of numerous soil-Cr(VI) contaminated sites throughout the continental U.S. The primary risk driver at these sites is hand-to-mouth ingestion of contaminated soil by children. In the following study we investigate the impact of soil geochemical and physical properties on the sorption and bioaccessibility of Cr(VI) in a vast array of soils relevant to neighboring DoD sites. For the 35 soils used in this study, A-horizon soils typically sorbed significantly more Cr(VI) relative to B-horizon soils. Multiple linear regression analysis suggested that Cr(VI) sorption increased with increasing soil total organic C (TOC) and decreasing soil pH. The bioaccessibility of total Cr (CrT) and Cr(VI) on the soils decreased with increasing soil TOC content. As the soil TOC content approached 0.4%, the bioaccessibility of soil bound Cr systematically decreased from approximately 65 to 10%. As the soil TOC content increased from 0.4 to 4%, the bioaccessibility of Cr(VI) and CrT remained relatively constant at approximately 4% and 10%, respectively. X-ray absorption near edge structure (XANES) spectroscopy suggested that Cr(VI) reduction to Cr(III) was prevalent and that the redox transformation of Cr(VI) increased with increasing soil TOC. XANES confirmed that nearly all bioaccessible soil Cr was the Cr(VI) moiety. Multiple linear regression analysis suggested that the bioaccessibility of Cr(VI) and its reduced counterpart Cr(III), decreased with increasing soil TOC and increasing soil pH. This is consistent with the observation that the reduction reaction and formation of Cr(III) increased with increasing soil TOC and that Cr(III) was significantly less bioaccessible relative to Cr(VI). The model was found to adequately describe CrT bioaccessibility in soils from DoD facilities where Cr(VI) contaminated sites were present. The results of this study illustrate the importance of soil properties on Cr(VI) sorption and bioassessability and help define what soil types have the greatest risk associated with Cr(VI) exposure.


Assuntos
Cromo/química , Poluentes do Solo/química , Solo/química , Adsorção , Disponibilidade Biológica , Cromo/metabolismo , Mucosa Gástrica/metabolismo , Humanos , Modelos Teóricos , Poluentes do Solo/metabolismo
2.
Ground Water ; 49(2): 209-18, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20132330

RESUMO

A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.


Assuntos
Biodegradação Ambiental , Movimentos da Água , Poluentes Químicos da Água/metabolismo , Algoritmos , Modelos Teóricos , Tennessee , Poluentes Químicos da Água/análise
3.
J Contam Hydrol ; 117(1-4): 37-45, 2010 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-20638152

RESUMO

Flow-interruption tracer test is an effective approach to identify kinetic mass transfer processes for solute transport in subsurface media. By switching well pumping and resting, one may alter the dominant transport mechanism and generate special concentration patterns for identifying kinetic mass transfer processes. In the present research, we conducted three-phase (i.e., pumping, resting, and pumping) field-scale flow-interruption tracer tests using a conservative tracer bromide in a multiple-well system installed at the US Department of Energy Site, Oak Ridge, TN. A novel modeling approach based on the resting-period measurements was developed to estimate the mass transfer parameters. This approach completely relied on the measured breakthrough curves without requiring detailed aquifer characterization and solving transport equations in nonuniform, transient flow fields. Additional measurements, including hydraulic heads and tracer concentrations in large pumping wells, were taken to justify the assumption that mass transfer processes dominated concentration change during resting periods. The developed approach can be conveniently applied to any linear mass transfer model. Both first-order and multirate mass transfer models were applied to analyze the breakthrough curves at various monitoring wells. The multirate mass transfer model was capable of jointly fitting breakthrough curve behavior, showing the effectiveness and flexibility for incorporating aquifer heterogeneity and scale effects in upscaling effective mass transfer models.


Assuntos
Modelos Teóricos , Movimentos da Água , Poluição da Água/análise , Cinética
4.
J Contam Hydrol ; 98(1-2): 50-60, 2008 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-18440665

RESUMO

A travel-time based approach is developed for estimating first-order reaction rate coefficients for transport with nonequilibrium linear mass transfer in heterogeneous media. Tracer transport in the mobile domain is characterized by a travel-time distribution, and mass transfer rates are described by a convolution product of concentrations in the mobile domain and a memory function rather than predefining the mass transfer model. A constant first-order reaction is assumed to occur only in the mobile domain. Analytical solutions in Laplace domain can be derived for both conservative and reactive breakthrough curves (BTCs). Temporal-moment analyses are presented by using the first and second moments of conservative and reactive BTCs and the mass consumption of the reactant for an inverse Gaussian travel-time distribution. In terms of moment matching, there is no need for one to specify the mass transfer model. With the same capacity ratio and the mean retention time, all mass transfer models will lead to the same moment-derived reaction rate coefficients. In addition, the consideration of mass transfer generally yields larger estimations of the reaction rate coefficient than models ignoring mass transfer. Furthermore, the capacity ratio and the mean retention time have opposite influences on the estimation of the reaction rate coefficient: the first-order reaction rate coefficient is positively linearly proportional to the capacity ratio, but negatively linearly proportional to the mean retention time.


Assuntos
Biodegradação Ambiental , Etanol/química , Modelos Químicos , Cinética
5.
J Contam Hydrol ; 91(3-4): 267-87, 2007 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-17197052

RESUMO

Strontium-90 has migrated deep into the unsaturated subsurface beneath leaking storage tanks in the Waste Management Areas (WMA) at the U.S. Department of Energy's (DOE) Hanford Reservation. Faster than expected transport of contaminants in the vadose zone is typically attributed to either physical hydrologic processes such as development of preferential flow pathways, or to geochemical processes such as the formation of stable, anionic complexes with organic chelates, e.g., ethylenediaminetetraacetic acid (EDTA). The goal of this paper is to determine whether hydrological processes in the Hanford sediments can influence the geochemistry of the system and hence control transport of Sr(2+) and SrEDTA(2-). The study used batch isotherms, saturated packed column experiments, and an unsaturated transport experiment in an undisturbed core. Isotherms and repacked column experiments suggested that the SrEDTA(2-) complex was unstable in the presence of Hanford sediments, resulting in dissociation and transport of Sr(2+) as a divalent cation. A decrease in sorption with increasing solid:solution ratio for Sr(2+) and SrEDTA(2-) suggested mineral dissolution resulted in competition for sorption sites and the formation of stable aqueous complexes. This was confirmed by detection of MgEDTA(2-), MnEDTA(2-), PbEDTA(2-), and unidentified Sr and Ca complexes. Displacement of Sr(2+) through a partially-saturated undisturbed core resulted in less retardation and more irreversible sorption than was observed in the saturated repacked columns, and model results suggested a significant reservoir (49%) of immobile water was present during transport through the heterogeneous layered sediments. The undisturbed core was subsequently disassembled along distinct bedding planes and subjected to sequential extractions. Strontium was unequally distributed between carbonates (49%), ion exchange sites (37%), and the oxide (14%) fraction. An inverse relationship between mass wetness and Sr suggested that sandy sediments of low water content constituted the immobile flow regime. Our results suggested that the sequestration of Sr(2+) in partially-saturated, heterogeneous sediments was most likely due to the formation of immobile water in drier regions having low hydraulic conductivities.


Assuntos
Ácido Edético/química , Modelos Teóricos , Poluentes Radioativos do Solo/química , Radioisótopos de Estrôncio/química , Movimentos da Água , Poluentes Radioativos da Água/química , Sedimentos Geológicos , Washington
6.
J Environ Qual ; 35(5): 1715-30, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16899743

RESUMO

The objective of this study was to determine how structure, stratigraphy, and weathering influence fate and transport of contaminants (particularly U) in the ground water and geologic material at the Department of Energy (DOE) Environmental Remediation Sciences Department (ERSD) Field Research Center (FRC). Several cores were collected near four former unlined adjoining waste disposal ponds. The cores were collected, described, analyzed for U, and compared with ground water geochemistry from surrounding multilevel wells. At some locations, acidic U-contaminated ground water was found to preferentially flow in small remnant fractures weathering the surrounding shale (nitric acid extractable U [U(NA)] usually < 50 mg kg(-1)) into thin (<25 cm) Fe oxide-rich clayey seams that retain U (U(NA) 239 to 375 mg kg(-1)). However, greatest contaminant transport occurs in a 2 to 3 m thick more permeable stratigraphic transition zone located between two less permeable, and generally less contaminated zones consisting of (i) overlying unconsolidated saprolite (U(NA) < 0.01 to 200 mg kg(-1)) and (ii) underlying less-weathered bedrock (U(NA) generally < 0.01 to 7 mg kg(-1)). In this transition zone, acidic (pH < 4) U-enriched ground water (U of 38 mg L(-1)) has weathered away calcite veins resulting in greater porosity, higher hydraulic conductivity, and higher U contamination (U(NA) 106 to 745 mg kg(-1)) of the weathered interbedded shale and sandstone. These characteristics of the transition zone produce an interval with a high flux of contaminants that could be targeted for remediation.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/análise , Urânio/análise , Poluentes Radioativos da Água/análise , Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental/métodos , Água Doce/análise , Água Doce/química , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Tennessee , Urânio/química , Poluentes Radioativos da Água/química
7.
Environ Sci Technol ; 40(8): 2601-7, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16683598

RESUMO

Few studies have demonstrated changes in community structure along a contaminant plume in terms of phylogenetic, functional, and geochemical changes, and such studies are essential to understand how a microbial ecosystem responds to perturbations. Clonal libraries of multiple genes (SSU rDNA, nirK, nirS, amoA, pmoA, and dsrAB) were analyzed from groundwater samples (n = 6) that varied in contaminant levels, and 107 geochemical parameters were measured. Principal components analyses (PCA) were used to compare the relationships among the sites with respect to the biomarker (n = 785 for all sequences) distributions and the geochemical variables. A major portion of the geochemical variance measured among the samples could be accounted for by tetrachloroethene, 99Tc, No3, SO4, Al, and Th. The PCA based on the distribution of unique biomarkers resulted in different groupings compared to the geochemical analysis, but when the SSU rRNA gene libraries were directly compared (deltaC(xy) values) the sites were clustered in a similar fashion compared to geochemical measures. The PCA based upon functional gene distributions each predicted different relationships among the sites, and comparisons of Euclidean distances based upon diversity indices for all functional genes (n = 432) grouped the sites by extreme or intermediate contaminant levels. The data suggested that the sites with low and high perturbations were functionally more similar than sites with intermediate conditions, and perhaps captured the overall community structure better than a single phylogenetic biomarker. Moreover, even though the background site was phylogenetically and geochemically distinct from the acidic sites, the extreme conditions of the acidic samples might be more analogous to the limiting nutrient conditions of the background site. An understanding of microbial community-level responses within an ecological framework would provide better insight for restoration strategies at contaminated field sites.


Assuntos
Bactérias/genética , Genes Bacterianos/genética , Microbiologia da Água , Poluentes Químicos da Água , Poluentes Radioativos da Água , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Biodiversidade , Biomarcadores/análise , Contagem de Colônia Microbiana , Metais/análise , Metais/toxicidade , Nitratos/análise , Nitratos/toxicidade , Filogenia , Resíduos Radioativos , Sulfatos/análise , Sulfatos/toxicidade , Urânio/análise , Urânio/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Poluentes Radioativos da Água/análise , Poluentes Radioativos da Água/toxicidade , Abastecimento de Água
8.
Appl Microbiol Biotechnol ; 71(5): 748-60, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16292532

RESUMO

High levels of nitrate are present in groundwater migrating from the former waste disposal ponds at the Y-12 National Security Complex in Oak Ridge, TN. A field-scale denitrifying fluidized bed reactor (FBR) was designed, constructed, and operated with ethanol as an electron donor for the removal of nitrate. After inoculation, biofilms developed on the granular activated carbon particles. Changes in the bacterial community of the FBR were evaluated with clone libraries (n = 500 partial sequences) of the small-subunit rRNA gene for samples taken over a 4-month start-up period. Early phases of start-up operation were characterized by a period of selection, followed by low diversity and predominance by Azoarcus-like sequences. Possible explanations were high pH and nutrient limitations. After amelioration of these conditions, diversification increased rapidly, with the appearance of Dechloromonas, Pseudomonas, and Hydrogenophaga sequences. Changes in NO3, SO4, and pH also likely contributed to shifts in community composition. The detection of sulfate-reducing-bacteria-like sequences closely related to Desulfovibrio and Desulfuromonas in the FBR have important implications for downstream applications at the field site.


Assuntos
Bactérias/crescimento & desenvolvimento , Reatores Biológicos , Ecossistema , Poluentes Químicos da Água/metabolismo , Bactérias/classificação , Bactérias/genética , Carvão Vegetal , Nitratos/metabolismo , Filogenia , Pseudomonas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Bactérias Redutoras de Enxofre , Urânio , Purificação da Água/métodos
9.
J Environ Qual ; 32(1): 129-37, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12549551

RESUMO

There are numerous Cr(III)-contaminated sites on Department of Defense (DoD) and Department of Energy (DOE) lands that are awaiting possible clean up and closure. Ingestion of contaminated soil by children is the risk driver that generally motivates the likelihood of site remediation. The purpose of this study was to develop a simple statistical model based on common soil properties to estimate the hioaccessibility of Cr(III)-contaminated soil upon ingestion. Thirty-five uncontaminated soils from seven major soil orders, whose properties were similar to numerous U.S. DoD contaminated sites, were treated with Cr(III) and aged. Statistical analysis revealed that Cr(III) sorption (e.g., adsorption and surface precipitation) by the soils was strongly correlated with the clay content, total inorganic C, pH, and the cation exchange capacity of the soils. Soils with higher quantities of clay, inorganic C (i.e., carbonates), higher pH, and higher cation exchange capacity generally sequestered more Cr(III). The amount of Cr(III) bioaccessible from the treated soils was determined with a physiologically based extraction test (PBET) that was designed to simulate the digestive process of the stomach. The bioaccessibility of Cr(III) varied widely as a function of soil type with most soils limiting bioaccessibility to <45 and <30% after I and 100 d soil-Cr aging, respectively. Statistical analysis showed the bioaccessibility of Cr(III) on soil was again related to the clay and total inorganic carbon (TIC) content of the soil. Bioaccessibility decreased as the soil TIC content increased and as the clay content decreased. The model yielded an equation based on common soil properties that could be used to predict the Cr(III) bioaccessibility in soils with a reasonable level of confidence.


Assuntos
Cromo/farmacocinética , Resíduos Perigosos , Modelos Estatísticos , Poluentes do Solo/farmacocinética , Adsorção , Silicatos de Alumínio/química , Disponibilidade Biológica , Carbono/química , Criança , Proteção da Criança , Cromo/química , Argila , Humanos , Concentração de Íons de Hidrogênio
10.
J Contam Hydrol ; 55(1-2): 137-59, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12000090

RESUMO

Field-scale processes governing the transport of chelated radionuclides in groundwater remain conceptually unclear for highly structured, heterogeneous environments. The objectives of this research were to provide an improved understanding and predictive capability of the hydrological and geochemical mechanisms that control the transport behavior of chelated radionuclides and metals in anoxic subsurface environments that are complicated by fracture flow and matrix diffusion. Our approach involved a long-term, steady-state natural gradient field experiment where nonreactive Br- and reactive 57Co(II)EDTA2- 109CdEDTA2-, and 51Cr(VI) were injected into a fracture zone of a contaminated fractured shale bedrock. The spatial and temporal distribution of the tracer and solutes was monitored for 500 days using an array of groundwater sampling wells instrumented within the fast-flowing fracture regime and a slower flowing matrix regime. The tracers were preferentially transported along strike-parallel fractures coupled with the slow diffusion of significant tracer mass into the bedrock matrix. The chelated radionuclides and metals were significantly retarded by the solid phase with the mechanisms of retardation largely due to redox reactions and sorption coupled with mineral-induced chelate-radionuclide dissociation. The formation of significant Fe(III)EDTA byproduct that accompanied the dissociation of the radionuclide-chelate complexes was believed to be the result of surface interactions with biotite which was the only Fe(III)-bearing mineral phase present in these Fe-reducing environments. These results counter current conceptual models that suggest chelated contaminants move conservatively through Fe-reducing environments since they are devoid of Fe-oxyhydroxides that are known to aggressively compete for chelates in oxic regimes. Modeling results further demonstrated that chelate-radionuclide dissociation reactions were most prevalent along fractures where accelerated weathering processes are expected to expose more primary minerals than the surrounding rock matrix. The findings of this study suggest that physical retardation mechanisms (i.e. diffusion) are dominant within the matrix regime, whereas geochemical retardation mechanisms are dominant within the fracture regime.


Assuntos
Quelantes/análise , Ácido Edético/análise , Poluentes Radioativos do Solo/análise , Solo , Movimentos da Água , Difusão , Monitoramento Ambiental , Previsões , Hipóxia , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...