Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(24): 15925-15934, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38830113

RESUMO

The growth in data generation necessitates efficient data processing technologies to address the von Neumann bottleneck in conventional computer architecture. Memory-driven computing, which integrates nonvolatile memory (NVM) devices in a 3D stack, is gaining attention, with CMOS back-end-of-line (BEOL)-compatible ferroelectric (FE) diodes being ideal due to their two-terminal design and inherently selector-free nature, facilitating high-density crossbar arrays. Here, we demonstrate BEOL-compatible, high-performance FE diodes scaled to 5, 10, and 20 nm FE Al0.72Sc0.28N/Al0.64Sc0.36N films. Through interlayer (IL) engineering, we show substantial improvements in the on/off ratios (>166 times) and rectification ratios (>176 times) in these scaled devices. These characteristics also enable 5-bit multistate operation with a stable retention. We also experimentally and theoretically demonstrate the counterintuitive result that the inclusion of an IL can lead to a decrease in the ferroelectric switching voltage of the device. An in-depth analysis into the device transport mechanisms is performed, and our compact model aligns seamlessly with the experimental results. Our results suggest the possibility of using scaled AlxSc1-xN FE diodes for high-performance, low-power, embedded NVM.

2.
ACS Nano ; 18(27): 17958-17968, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38918951

RESUMO

Achieving robust and electrically controlled valley polarization in monolayer transition metal dichalcogenides (ML-TMDs) is a frontier challenge for realistic valleytronic applications. Theoretical investigations show that the integration of 2D materials with ferroelectrics is a promising strategy; however, an experimental demonstration has remained elusive. Here, we fabricate ferroelectric field-effect transistors using a ML-WSe2 channel and an Al0.68Sc0.32N (AlScN) ferroelectric dielectric and experimentally demonstrate efficient tuning as well as non-volatile control of valley polarization. We measure a large array of transistors and obtain a maximum valley polarization of ∼27% at 80 K with stable retention up to 5400 s. The enhancement in the valley polarization is ascribed to the efficient exciton-to-trion (X-T) conversion and its coupling with an out-of-plane electric field, viz., the quantum-confined Stark effect. This changes the valley depolarization pathway from strong exchange interactions to slow spin-flip intervalley scattering. Our research demonstrates a promising approach for achieving non-volatile control over valley polarization for practical valleytronic device applications.

3.
ACS Nano ; 18(23): 15185-15193, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38809690

RESUMO

Observation of interlayer, charge transfer (CT) excitons in van der Waals heterostructures (vdWHs) based on 2D-2D systems has been well investigated. While conceptually interesting, these charge transfer excitons are highly delocalized and spatially localizing them requires twisting layers at very specific angles. This issue of localizing the CT excitons can be overcome via making nanoplate-2D material heterostructures (N2DHs) where one of the components is a spatially quantum confined medium. Here, we demonstrate the formation of CT excitons in a mixed dimensional system comprising MoSe2 and WSe2 monolayers and CdSe/CdS-based core/shell nanoplates (NPLs). Spectral signatures of CT excitons in our N2DHs were resolved locally at the 2D/single-NPL heterointerface using tip-enhanced photoluminescence (TEPL) at room temperature. By varying both the 2D material and the shell thickness of the NPLs and applying an out-of-plane electric field, the exciton resonance energy was tuned by up to 100 meV. Our finding is a significant step toward the realization of highly tunable N2DH-based next-generation photonic devices.

4.
ACS Nano ; 18(23): 14841-14876, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38810109

RESUMO

Atomically thin 2D films and their van der Waals heterostructures have demonstrated immense potential for breakthroughs and innovations in science and technology. Integrating 2D films into electronics and optoelectronics devices and their applications in electronics and optoelectronics can lead to improve device efficiencies and tunability. Consequently, there has been steady progress in large-area 2D films for both front- and back-end technologies, with a keen interest in optimizing different growth and synthetic techniques. Parallelly, a significant amount of attention has been directed toward efficient transfer techniques of 2D films on different substrates. Current methods for synthesizing 2D films often involve high-temperature synthesis, precursors, and growth stimulants with highly chemical reactivity. This limitation hinders the widespread applications of 2D films. As a result, reports concerning transfer strategies of 2D films from bare substrates to target substrates have proliferated, showcasing varying degrees of cleanliness, surface damage, and material uniformity. This review aims to evaluate, discuss, and provide an overview of the most advanced transfer methods to date, encompassing wet, dry, and quasi-dry transfer methods. The processes, mechanisms, and pros and cons of each transfer method are critically summarized. Furthermore, we discuss the feasibility of these 2D film transfer methods, concerning their applications in devices and various technology platforms.

5.
Nano Lett ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593418

RESUMO

Localized emission in atomically thin semiconductors has sparked significant interest as single-photon sources. Despite comprehensive studies into the correlation between localized strain and exciton emission, the impacts of charge transfer on nanobubble emission remains elusive. Here, we report the observation of core/shell-like localized emission from monolayer WSe2 nanobubbles at room temperature through near-field studies. By altering the electronic junction between monolayer WSe2 and the Au substrate, one can effectively adjust the semiconductor to metal junction from a Schottky to an Ohmic junction. Through concurrent analysis of topography, potential, tip-enhanced photoluminescence, and a piezo response force microscope, we attribute the core/shell-like emissions to strong piezoelectric potential aided by induced polarity at the WSe2-Au Schottky interface which results in spatial confinement of the excitons. Our findings present a new approach for manipulating charge confinement and engineering localized emission within atomically thin semiconductor nanobubbles. These insights hold implications for advancing the nano and quantum photonics with low-dimensional semiconductors.

6.
ACS Nano ; 18(17): 10955-10978, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38625032

RESUMO

2D semiconductors have interesting physical and chemical attributes that have led them to become one of the most intensely investigated semiconductor families in recent history. They may play a crucial role in the next technological revolution in electronics as well as optoelectronics or photonics. In this Perspective, we explore the fundamental principles and significant advancements in electronic and photonic devices comprising 2D semiconductors. We focus on strategies aimed at enhancing the performance of conventional devices and exploiting important properties of 2D semiconductors that allow fundamentally interesting device functionalities for future applications. Approaches for the realization of emerging logic transistors and memory devices as well as photovoltaics, photodetectors, electro-optical modulators, and nonlinear optics based on 2D semiconductors are discussed. We also provide a forward-looking perspective on critical remaining challenges and opportunities for basic science and technology level applications of 2D semiconductors.

7.
Sci Rep ; 14(1): 6920, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519600

RESUMO

2D materials have important fundamental properties allowing for their use in many potential applications, including quantum computing. Various Van der Waals materials, including Tungsten disulfide (WS2), have been employed to showcase attractive device applications such as light emitting diodes, lasers and optical modulators. To maximize the utility and value of integrated quantum photonics, the wavelength, polarization and intensity of the photons from a quantum emission (QE) must be stable. However, random variation of emission energy, caused by the inhomogeneity in the local environment, is a major challenge for all solid-state single photon emitters. In this work, we assess the random nature of the quantum fluctuations, and we present time series forecasting deep learning models to analyse and predict QE fluctuations for the first time. Our trained models can roughly follow the actual trend of the data and, under certain data processing conditions, can predict peaks and dips of the fluctuations. The ability to anticipate these fluctuations will allow physicists to harness quantum fluctuation characteristics to develop novel scientific advances in quantum computing that will greatly benefit quantum technologies.

8.
Nanoscale ; 16(10): 5169-5176, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38390639

RESUMO

Atomically thin two-dimensional transition-metal dichalcogenides (2D-TMDs) have emerged as semiconductors for next-generation nanoelectronics. As 2D-TMD-based devices typically utilize metals as the contacts, it is crucial to understand the properties of the 2D-TMD/metal interface, including the characteristics of the Schottky barriers formed at the semiconductor-metal junction. Conventional methods for investigating the Schottky barrier height (SBH) at these interfaces predominantly rely on contact-based electrical measurements with complex gating structures. In this study, we introduce an all-optical approach for non-contact measurement of the SBH, utilizing high-quality WS2/Au heterostructures as a model system. Our approach employs a below-bandgap pump to excite hot carriers from the gold into WS2 with varying thicknesses. By monitoring the resultant carrier density changes within the WS2 layers with a broadband probe, we traced the dynamics and magnitude of charge transfer across the interface. A systematic sweep of the pump wavelength enables us to determine the SBH values and unveil an inverse relationship between the SBH and the thickness of the WS2 layers. First-principles calculations reveal the correlation between the probability of injection and the density of states near the conduction band minimum of WS2. The versatile optical methodology for probing TMD/metal interfaces can shed light on the intricate charge transfer characteristics within various 2D heterostructures, facilitating the development of more efficient and scalable nano-electronic and optoelectronic technologies.

9.
ACS Nano ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315422

RESUMO

Absorption of photons in atomically thin materials has become a challenge in the realization of ultrathin, high-performance optoelectronics. While numerous schemes have been used to enhance absorption in 2D semiconductors, such enhanced device performance in scalable monolayer photodetectors remains unattained. Here, we demonstrate wafer-scale integration of monolayer single-crystal MoS2 photodetectors with a nitride-based resonant plasmonic metasurface to achieve a high detectivity of 2.58 × 1012 Jones with a record-low dark current of 8 pA and long-term stability over 40 days. Upon comparison with control devices, we observe an overall enhancement factor of >100; this can be attributed to the local strong EM field enhanced photogating effect by the resonant plasmonic metasurface. Considering the compatibility of 2D semiconductors and hafnium nitride with the Si CMOS process and their scalability across wafer sizes, our results facilitate the smooth incorporation of 2D semiconductor-based photodetectors into the fields of imaging, sensing, and optical communication applications.

10.
ACS Nano ; 18(5): 4180-4188, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38271989

RESUMO

Recent advancements in ferroelectric field-effect transistors (FeFETs) using two-dimensional (2D) semiconductor channels and ferroelectric Al0.68Sc0.32N (AlScN) allow high-performance nonvolatile devices with exceptional ON-state currents, large ON/OFF current ratios, and large memory windows (MW). However, previous studies have solely focused on n-type FeFETs, leaving a crucial gap in the development of p-type and ambipolar FeFETs, which are essential for expanding their applicability to a wide range of circuit-level applications. Here, we present a comprehensive demonstration of n-type, p-type, and ambipolar FeFETs on an array scale using AlScN and multilayer/monolayer WSe2. The dominant injected carrier type is modulated through contact engineering at the metal-semiconductor junction, resulting in the realization of all three types of FeFETs. The effect of contact engineering on the carrier injection is further investigated through technology-computer-aided design simulations. Moreover, our 2D WSe2/AlScN FeFETs achieve high electron and hole current densities of ∼20 and ∼10 µA/µm, respectively, with a high ON/OFF ratio surpassing ∼107 and a large MW of >6 V (0.14 V/nm).

11.
Light Sci Appl ; 13(1): 1, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38161209

RESUMO

Excitons, bound electron-hole pairs, in two-dimensional hybrid organic inorganic perovskites (2D HOIPs) are capable of forming hybrid light-matter states known as exciton-polaritons (E-Ps) when the excitonic medium is confined in an optical cavity. In the case of 2D HOIPs, they can self-hybridize into E-Ps at specific thicknesses of the HOIP crystals that form a resonant optical cavity with the excitons. However, the fundamental properties of these self-hybridized E-Ps in 2D HOIPs, including their role in ultrafast energy and/or charge transfer at interfaces, remain unclear. Here, we demonstrate that >0.5 µm thick 2D HOIP crystals on Au substrates are capable of supporting multiple-orders of self-hybridized E-P modes. These E-Ps have high Q factors (>100) and modulate the optical dispersion for the crystal to enhance sub-gap absorption and emission. Through varying excitation energy and ultrafast measurements, we also confirm energy transfer from higher energy E-Ps to lower energy E-Ps. Finally, we also demonstrate that E-Ps are capable of charge transport and transfer at interfaces. Our findings provide new insights into charge and energy transfer in E-Ps opening new opportunities towards their manipulation for polaritonic devices.

12.
ACS Nano ; 18(1): 1073-1083, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38100089

RESUMO

The significance of metal-semiconductor interfaces and their impact on electronic device performance have gained increasing attention, with a particular focus on investigating the contact metal. However, another avenue of exploration involves substituting the contact metal at the metal-semiconductor interface of field-effect transistors with semiconducting layers to introduce additional functionalities to the devices. Here, a scalable approach for fabricating metal-oxide-semiconductor (channel)-semiconductor (interfacial layer) field-effect transistors is proposed by utilizing solution-processed semiconductors, specifically semiconducting single-walled carbon nanotubes and molybdenum disulfide, as the channel and interfacial semiconducting layers, respectively. The work function of the interfacial MoS2 is modulated by controlling the sulfur vacancy concentration through chemical treatment, which results in distinctive energy band alignments within a single device configuration. The resulting band alignments lead to multiple functionalities, including multivalued transistor characteristics and multibit nonvolatile memory (NVM) behavior. Moreover, leveraging the stable NVM properties, we demonstrate artificial synaptic devices with 88.9% accuracy of MNIST image recognition.

13.
ACS Appl Mater Interfaces ; 15(51): 59693-59703, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38090759

RESUMO

Two-dimensional materials, such as transition metal dichalcogenides (TMDCs), have the potential to revolutionize the field of electronics and photonics due to their unique physical and structural properties. This research presents a novel method for synthesizing crystalline TMDCs crystals with <10 nm size using ultrafast migration of vacancies at elevated temperatures. Through in situ and ex situ processing and using atomic-level characterization techniques, we analyzed the shape, size, crystallinity, composition, and strain distribution of these nanocrystals. These nanocrystals exhibit electronic structure signatures that differ from the 2D bulk: i.e., uniform mono- and multilayers. Further, our in situ, vacuum-based synthesis technique allows observation and comparison of defect and phase evolution in these crystals formed under van der Waals heterostructure confinement versus unconfined conditions. Overall, this research demonstrates a solid-state route to synthesizing uniform nanocrystals of TMDCs and lays the foundation for materials science in confined 2D spaces under extreme conditions.

14.
Nat Commun ; 14(1): 4747, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550303

RESUMO

High-performance p-type two-dimensional (2D) transistors are fundamental for 2D nanoelectronics. However, the lack of a reliable method for creating high-quality, large-scale p-type 2D semiconductors and a suitable metallization process represents important challenges that need to be addressed for future developments of the field. Here, we report the fabrication of scalable p-type 2D single-crystalline 2H-MoTe2 transistor arrays with Fermi-level-tuned 1T'-phase semimetal contact electrodes. By transforming polycrystalline 1T'-MoTe2 to 2H polymorph via abnormal grain growth, we fabricated 4-inch 2H-MoTe2 wafers with ultra-large single-crystalline domains and spatially-controlled single-crystalline arrays at a low temperature (~500 °C). Furthermore, we demonstrate on-chip transistors by lithographic patterning and layer-by-layer integration of 1T' semimetals and 2H semiconductors. Work function modulation of 1T'-MoTe2 electrodes was achieved by depositing 3D metal (Au) pads, resulting in minimal contact resistance (~0.7 kΩ·µm) and near-zero Schottky barrier height (~14 meV) of the junction interface, and leading to high on-state current (~7.8 µA/µm) and on/off current ratio (~105) in the 2H-MoTe2 transistors.

15.
Nat Nanotechnol ; 18(11): 1303-1310, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37474683

RESUMO

The neural network image sensor-which mimics neurobiological functions of the human retina-has recently been demonstrated to simultaneously sense and process optical images. However, highly tunable responsivity concurrent with non-volatile storage of image data in the neural network would allow a transformative leap in compactness and function of these artificial neural networks. Here, we demonstrate a reconfigurable and non-volatile neuromorphic device based on two-dimensional semiconducting metal sulfides that is concurrently a photovoltaic detector. The device is based on a metal-semiconductor-metal (MSM) two-terminal structure with pulse-tunable sulfur vacancies at the M-S junctions. By modulating sulfur vacancy concentrations, the polarities of short-circuit photocurrent can be changed with multiple stable magnitudes. The bias-induced motion of sulfur vacancies leads to highly reconfigurable responsivities by dynamically modulating the Schottky barriers. A convolutional neuromorphic network is finally designed for image processing and object detection using the same device. The results demonstrated that neuromorphic photodetectors can be the key components of visual perception hardware.

16.
ACS Nano ; 17(15): 14442-14448, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37489978

RESUMO

Atomically thin transition metal dichalcogenides (TMDs), a subclass of two-dimensional (2D) layered materials, have numerous fascinating properties that make them a promising platform for photonic and optoelectronic devices. In particular, excited state transport by TMDs is important in energy harvesting and photonic switching; however, long-range transport in TMDs is challenging due to the lack of availability of large area films. Whereas most previous studies have focused on small, exfoliated monolayer flakes, in this work we demonstrate metal-organic chemical vapor deposition grown centimeter-scale monolayers of WS2 that support polariton propagation lengths of up to 60 µm. The polaritons form through the strong coupling of excitons with Bloch surface waves (BSWs) supported by all-dielectric photonic structures. We observe that the propagation length increases with the number of dielectric pairs due to the increased quality factor of the supporting distributed Bragg reflector. Furthermore, a longer propagation length is observed as the guided or BSW content of the polariton is increased. Our results provide a practical approach for the systematic engineering of long-range energy transport mediated by exciton-polaritons in TMD layers. Along with the accessibility of large area TMDs, our work enables applications for practical TMD-based polaritonic devices that operate at room temperature.

17.
Nanoscale ; 15(23): 9964-9972, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37266913

RESUMO

Wide bandgap semiconductors such as gallium oxide (Ga2O3) have attracted much attention for their use in next-generation high-power electronics. Although single-crystal Ga2O3 substrates can be routinely grown from melt along various orientations, the influence of such orientations has been seldom reported. Further, making rectifying p-n diodes from Ga2O3 has been difficult due to lack of p-type doping. In this study, we fabricated and optimized 2D/3D vertical diodes on ß-Ga2O3 by varying the following three factors: substrate planar orientation, choice of 2D material and metal contacts. The quality of our devices was validated using high-temperature dependent measurements, atomic-force microscopy (AFM) techniques and technology computer-aided design (TCAD) simulations. Our findings suggest that 2D/3D ß-Ga2O3 vertical heterojunctions are optimized by substrate planar orientation (-201), combined with 2D WS2 exfoliated layers and Ti contacts, and show record rectification ratios (>106) concurrently with ON-Current density (>103 A cm-2) for application in power rectifiers.


Assuntos
Eletrônica , Semicondutores , Microscopia de Força Atômica
18.
ACS Nano ; 17(11): 9694-9747, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37219929

RESUMO

Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of emergent 2D systems. Here, we review recent advances in the theory, synthesis, characterization, device, and quantum physics of 2D materials and their heterostructures. First, we shed insight into modeling of defects and intercalants, focusing on their formation pathways and strategic functionalities. We also review machine learning for synthesis and sensing applications of 2D materials. In addition, we highlight important development in the synthesis, processing, and characterization of various 2D materials (e.g., MXnenes, magnetic compounds, epitaxial layers, low-symmetry crystals, etc.) and discuss oxidation and strain gradient engineering in 2D materials. Next, we discuss the optical and phonon properties of 2D materials controlled by material inhomogeneity and give examples of multidimensional imaging and biosensing equipped with machine learning analysis based on 2D platforms. We then provide updates on mix-dimensional heterostructures using 2D building blocks for next-generation logic/memory devices and the quantum anomalous Hall devices of high-quality magnetic topological insulators, followed by advances in small twist-angle homojunctions and their exciting quantum transport. Finally, we provide the perspectives and future work on several topics mentioned in this review.

19.
Nat Nanotechnol ; 18(9): 1044-1050, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37217764

RESUMO

Three-dimensional monolithic integration of memory devices with logic transistors is a frontier challenge in computer hardware. This integration is essential for augmenting computational power concurrent with enhanced energy efficiency in big data applications such as artificial intelligence. Despite decades of efforts, there remains an urgent need for reliable, compact, fast, energy-efficient and scalable memory devices. Ferroelectric field-effect transistors (FE-FETs) are a promising candidate, but requisite scalability and performance in a back-end-of-line process have proven challenging. Here we present back-end-of-line-compatible FE-FETs using two-dimensional MoS2 channels and AlScN ferroelectric materials, all grown via wafer-scalable processes. A large array of FE-FETs with memory windows larger than 7.8 V, ON/OFF ratios greater than 107 and ON-current density greater than 250 µA um-1, all at ~80 nm channel length are demonstrated. The FE-FETs show stable retention up to 10 years by extension, and endurance greater than 104 cycles in addition to 4-bit pulse-programmable memory features, thereby opening a path towards the three-dimensional heterointegration of a two-dimensional semiconductor memory with silicon complementary metal-oxide-semiconductor logic.

20.
Nat Commun ; 14(1): 2649, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156799

RESUMO

Strong light-matter interactions in localized nano-emitters placed near metallic mirrors have been widely reported via spectroscopic studies in the optical far-field. Here, we report a near-field nano-spectroscopic study of localized nanoscale emitters on a flat Au substrate. Using quasi 2-dimensional CdSe/CdxZn1-xS nanoplatelets, we observe directional propagation on the Au substrate of surface plasmon polaritons launched from the excitons of the nanoplatelets as wave-like fringe patterns in the near-field photoluminescence maps. These fringe patterns were confirmed via extensive electromagnetic wave simulations to be standing-waves formed between the tip and the edge-up assembled nano-emitters on the substrate plane. We further report that both light confinement and in-plane emission can be engineered by tuning the surrounding dielectric environment of the nanoplatelets. Our results lead to renewed understanding of in-plane, near-field electromagnetic signal transduction from the localized nano-emitters with profound implications in nano and quantum photonics as well as resonant optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...