Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(15)2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892596

RESUMO

Dimethyl sulfoxide (DMSO) is used to sustain or favor hepatocyte differentiation in vitro. Thus, DMSO is used in the differentiation protocol of the HepaRG cells that present the closest drug-metabolizing enzyme activities to primary human hepatocytes in culture. The aim of our study is to clarify its influence on liver-specific gene expression. For that purpose, we performed a large-scale analysis (gene expression and histone modification) to determine the global role of DMSO exposure during the differentiation process of the HepaRG cells. The addition of DMSO drives the upregulation of genes mainly regulated by PXR and PPARα whereas genes not affected by this addition are regulated by HNF1α, HNF4α, and PPARα. DMSO-differentiated-HepaRG cells show a differential expression for genes regulated by histone acetylation, while differentiated-HepaRG cells without DMSO show gene signatures associated with histone deacetylases. In addition, we observed an interplay between cytoskeleton organization and EMC remodeling with hepatocyte maturation.


Assuntos
Dimetil Sulfóxido , Epigênese Genética , Hepatócitos , Dimetil Sulfóxido/metabolismo , Dimetil Sulfóxido/farmacologia , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , PPAR alfa/metabolismo
2.
Cancers (Basel) ; 14(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35565300

RESUMO

Urine cytology is non-invasive, easy to collect, with medium sensitivity and a high specificity. It is an effective way to detect high-grade bladder cancer (BC), but it is less effective on low-grade BC because the rate of equivocal results is much higher. Recently, the fluorescent properties of plasma membranes of urothelial tumor cells (UTC) found in urine cytology have been shown to be useful in improving the early detection of BC. This phenomenon is called peri-membrane fluorescence (PMF). Based on previous studies that have identified the PMF on UTCs, the main objective was to characterize this phenomenon. For this study, a software was specially created to quantify the PMF of all tested cells and different treatments performed. PMF was not found to be a morphological and discriminating feature of UTCs, all cells in shape and not from urine show PMF. We were able to highlight the crucial role of plasma membrane integrity in the maintenance of PMF. Finally, it was found that the induction of a strong cellular stress induced a decrease in PMF, mimicking what was observed in non-tumor cells collected from urine. These results suggest that PMF is found in cells able to resist this stress, such as tumor cells.

3.
Cytometry A ; 101(12): 1068-1083, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35614552

RESUMO

The progress of digital pathology in recent years has been an opportunity for the development of automated image analysis algorithms for quantitative measurements and computer aided diagnosis. With those new methods comes the need for high staining quality and reproducibility, as image analysis tools are typically more sensible to slight stain variations than trained pathologists. This article presents a method for the automated analysis of cytology slides stains specifically adapted to the challenges encountered in digital cytopathology. In particular, the variety of cell types in cytology slides, the 3D distribution of the cellular material, the presence of superposed cells and the need for independent analysis of sub-cellular compartments are addressed. The proposed method is applied to the quantification of staining variations for quality control, resulting from changes in the staining protocol such as reagent immersion time or a reagent change. Another demonstrated application is the selection of staining protocol parameters that maximize the visible details in nucleus. Finally the analysis pipeline is also used to compare different stain normalization algorithms on digital cytology slides. Code available at: https://gitlab.com/vitadx/articles/automated_staining_analysis.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Reprodutibilidade dos Testes , Coloração e Rotulagem , Processamento de Imagem Assistida por Computador/métodos , Citodiagnóstico , Corantes
4.
Pharmaceutics ; 14(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35456637

RESUMO

In order to identify the peptides, selected from the literature, that exhibit the strongest tropism towards human hepatoma cells, cell uptake assays were performed using biotinylated synthetic peptides bound to fluorescent streptavidin or engrafted onto nanoparticles (NPs), prepared from biotin-poly(ethylene glycol)-block-poly(benzyl malate) (Biot-PEG-b-PMLABe) via streptavidin bridging. Two peptides, derived from the circumsporozoite protein of Plasmodium berghei- (CPB) and George Baker (GB) Virus A (GBVA10-9), strongly enhanced the endocytosis of both streptavidin conjugates and NPs in hepatoma cells, compared to primary human hepatocytes and non-hepatic cells. Unexpectedly, the uptake of CPB- and GBVA10-9 functionalized PEG-b-PMLABe-based NPs by hepatoma cells involved, at least in part, the peptide binding to apolipoproteins, which would promote NP's interactions with cell membrane receptors of HDL particles. In addition, CPB and GBVA10-9 peptide-streptavidin conjugates favored the uptake by hepatoma cells over that of the human macrophages, known to strongly internalize nanoparticles by phagocytosis. These two peptides are promising candidate ligands for targeting hepatocellular carcinomas.

5.
Int J Pharm ; 513(1-2): 438-452, 2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-27640247

RESUMO

The present work reports the investigation of the biocompatibility, opsonisation and cell uptake by human primary macrophages and HepaRG cells of nanoparticles (NPs) formulated from poly(ß-malic acid)-b-poly(ß-hydroxybutyrate) (PMLA-b-PHB) and poly(ß-malic acid)-b-poly(trimethylene carbonate) (PMLA-b-PTMC) diblock copolymers, namely PMLA800-b-PHB7300, PMLA4500-b-PHB4400, PMLA2500-b-PTMC2800 and PMLA4300-b-PTMC1400. NPs derived from PMLA-b-PHB and PMLA-b-PTMC do not trigger lactate dehydrogenase release and do not activate the secretion of pro-inflammatory cytokines demonstrating the excellent biocompatibility of these copolymers derived nano-objects. Using a protein adsorption assay, we demonstrate that the binding of plasma proteins is very low for PMLA-b-PHB-based nano-objects, and higher for those prepared from PMLA-b-PTMC copolymers. Moreover, a more efficient uptake by macrophages and HepaRG cells is observed for NPs formulated from PMLA-b-PHB copolymers compared to that of PMLA-b-PTMC-based NPs. Interestingly, the uptake in HepaRG cells of NPs formulated from PMLA800-b-PHB7300 is much higher than that of NPs based on PMLA4500-b-PHB4400. In addition, the cell internalization of PMLA800-b-PHB7300 based-NPs, probably through endocytosis, is strongly increased by serum pre-coating in HepaRG cells but not in macrophages. Together, these data strongly suggest that the binding of a specific subset of plasmatic proteins onto the PMLA800-b-PHB7300-based NPs favors the HepaRG cell uptake while reducing that of macrophages.


Assuntos
Dioxanos , Hidroxibutiratos , Malatos , Nanopartículas , Poliésteres , Polímeros , Transporte Biológico , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Citocinas/metabolismo , Dioxanos/administração & dosagem , Dioxanos/química , Dioxanos/farmacologia , Humanos , Hidroxibutiratos/administração & dosagem , Hidroxibutiratos/química , Hidroxibutiratos/farmacologia , L-Lactato Desidrogenase/metabolismo , Neoplasias Hepáticas , Macrófagos/metabolismo , Malatos/administração & dosagem , Malatos/química , Malatos/farmacologia , Nanopartículas/administração & dosagem , Nanopartículas/química , Poliésteres/administração & dosagem , Poliésteres/química , Poliésteres/farmacologia , Polímeros/administração & dosagem , Polímeros/química , Polímeros/farmacologia , Proibitinas
6.
Chemistry ; 22(8): 2819-30, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26791328

RESUMO

Amphiphilic polycarbonate-poly(hydroxyalkanoate) diblock copolymers, namely, poly(trimethylene carbonate) (PTMC)-b-poly(ß-malic acid) (PMLA), are reported for the first time. The synthetic strategy relies on commercially available catalysts and initiator. The controlled ring-opening polymerization (ROP) of trimethylene carbonate (TMC) catalyzed by the organic guanidine base 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), associated with iPrOH as an initiator, provided iPrO-PTMC-OH, which served as a macroinitiator in the controlled ROP of benzyl ß-malolactonate (MLABe) catalyzed by the neodymium triflate salt (Nd(OTf)3). The resulting hydrophobic iPrO-PTMC-b-PMLABe-OH copolymers were then hydrogenolyzed into the parent iPrO-PTMC-b-PMLA-OH copolymers. A range of well-defined copolymers, featuring different sizes of segments (Mn,NMR up to 9300 g mol(-1) ; ÐM =1.28-1.40), were thus isolated in gram quantities, as evidenced by NMR spectroscopy, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and contact angle analyses. Subsequently, PTMC-b-PMLA copolymers with different hydrophilic weight fractions (11-75 %) self-assembled in phosphate-buffered saline upon nanoprecipitation into well-defined nano-objects with Dh =61-176 nm, a polydispersity index <0.25, and a negative surface charge, as characterized by dynamic light scattering and zeta-potential analyses. In addition, these nanoparticles demonstrated no significant effect on cell viability at low concentrations, and a very low cytotoxicity at high concentrations only for PTMC-b-PMLA copolymers exhibiting hydrophilic fractions over 47 %, thus illustrating the potential of these copolymers as promising nanoparticles.


Assuntos
Compostos Azabicíclicos/química , Materiais Biocompatíveis/química , Dioxanos/química , Malatos/química , Nanopartículas/química , Polímeros/química , Materiais Biocompatíveis/síntese química , Dioxanos/síntese química , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Malatos/síntese química , Tamanho da Partícula , Polímeros/síntese química
7.
Biochim Biophys Acta ; 1857(4): 443-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26768115

RESUMO

Cardiolipin (CL) is a unique mitochondrial phospholipid potentially affecting many aspects of mitochondrial function/processes, i.e. energy production through oxidative phosphorylation. Most data focusing on implication of CL content and mitochondrial bioenergetics were performed in yeast or in cellular models of Barth syndrome. Previous work reported that increase in CL content leads to decrease in liver mitochondrial ATP synthesis yield. Therefore the aim of this study was to determine the effects of moderate decrease in CL content on mitochondrial bioenergetics in human hepatocytes. For this purpose, we generated a cardiolipin synthase knockdown (shCLS) in HepaRG hepatoma cells showing bioenergetics features similar to primary human hepatocytes. shCLS cells exhibited a 55% reduction in CLS gene and a 40% decrease in protein expression resulting in a 45% lower content in CL compared to control (shCTL) cells. Oxygen consumption was significantly reduced in shCLS cells compared to shCTL regardless of substrate used and energy state analyzed. Mitochondrial low molecular weight supercomplex content was higher in shCLS cells (+60%) compared to shCTL. Significant fragmentation of the mitochondrial network was observed in shCLS cells compared to shCTL cells. Surprisingly, mitochondrial ATP synthesis was unchanged in shCLS compared to shCTL cells but exhibited a higher ATP:O ratio (+46%) in shCLS cells. Our results suggest that lowered respiratory chain activity induced by moderate reduction in CL content may be due to both destabilization of supercomplexes and mitochondrial network fragmentation. In addition, CL content may regulate mitochondrial ATP synthesis yield.


Assuntos
Trifosfato de Adenosina/biossíntese , Cardiolipinas/análise , Transporte de Elétrons , Hepatócitos/metabolismo , Células Cultivadas , Metabolismo Energético , Humanos , Mitocôndrias/metabolismo
8.
Biochim Biophys Acta ; 1851(11): 1490-500, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26327596

RESUMO

Cardiolipin (CL) content accumulation leads to an increase in energy wasting in liver mitochondria in a rat model of cancer cachexia in which tumor necrosis factor alpha (TNFα) is highly expressed. In this study we investigated the mechanisms involved in liver mitochondria CL accumulation in cancer cachexia and examined if TNFα was involved in this process leading to mitochondrial bioenergetics alterations. We studied gene, protein expression and activity of the main enzymes involved in CL metabolism in liver mitochondria from a rat model of cancer cachexia and in HepaRG hepatocyte-like cells exposed to 20 ng/ml of TNFα for 12 h. Phosphatidylglycerolphosphate synthase (PGPS) gene expression was increased 2.3-fold (p<0.02) and cardiolipin synthase (CLS) activity decreased 44% (p<0.03) in cachectic rat livers compared to controls. CL remodeling enzymes monolysocardiolipin acyltransferase (MLCL AT-1) activity and tafazzin (TAZ) gene expression were increased 30% (p<0.01) and 50% (p<0.02), respectively, in cachectic rat livers compared to controls. Incubation of hepatocytes with TNFα increased CL content 15% (p<0.05), mitochondrial oxygen consumption 33% (p<0.05), PGPS gene expression 44% (p<0.05) and MLCL AT-1 activity 20% (p<0.05) compared to controls. These above findings strongly suggest that in cancer cachexia, TNFα induces a higher energy wasting in liver mitochondria by increasing CL content via upregulation of PGPS expression.


Assuntos
Caquexia/metabolismo , Cardiolipinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Hepatócitos/metabolismo , Neoplasias Peritoneais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Caquexia/genética , Caquexia/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Metabolismo Energético/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/patologia , Ratos , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia
9.
Hepatology ; 60(6): 2077-90, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25098666

RESUMO

UNLABELLED: Human hepatocellular carcinoma (HCC) heterogeneity promotes recurrence and resistance to therapies. Recent studies have reported that HCC may be derived not only from adult hepatocytes and hepatoblasts but also hepatic stem/progenitors. In this context, HepaRG cells may represent a suitable cellular model to study stem/progenitor cancer cells and the retrodifferentiation of tumor-derived hepatocyte-like cells. Indeed, they differentiate into hepatocyte- and biliary-like cells. Moreover, tumor-derived HepaRG hepatocyte-like cells (HepaRG-tdHep) differentiate into both hepatocyte- and biliary-like cells through a hepatic progenitor. In this study we report the mechanisms and molecular effectors involved in the retrodifferentiation of HepaRG-tdHep into bipotent progenitors. Gene expression profiling was used to identify genomic changes during the retrodifferentiation of HepaRG-tdHep into progenitors. We demonstrated that gene expression signatures related to a poor-prognosis HCC subclass, proliferative progenitors, or embryonic stem cells were significantly enriched in HepaRG progenitors derived from HepaRG-tdHep. HepaRG-tdHep retrodifferentiation is mediated by crosstalk between transforming growth factor beta 1 (TGFß1) and inflammatory cytokine pathways (e.g., tumor necrosis factor alpha [TNFα] and interleukin 6 [IL6]). Signatures related to TNFα, IL6, and TGFß activation pathways are induced within the first hour of retrodifferentiation. Moreover, specific activation or inhibition of these signaling pathways allowed us to determine that TNFα and IL6 contribute to the loss of hepatic-specific marker expression and that TGFß1 induces an epithelial-to-mesenchymal transition of HepaRG-tdHep. Interestingly, the retrodifferentiation process is blocked by the histone deacetylase inhibitor trichostatin A, opening new therapeutic opportunities. CONCLUSION: Cancer progenitor cells (or metastasis progenitors) may derive from tumor-derived hepatocyte-like cells in an inflammatory environment that is frequently associated with HCC.


Assuntos
Desdiferenciação Celular , Hepatócitos/fisiologia , Interleucina-6/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Transição Epitelial-Mesenquimal , Humanos , Ácidos Hidroxâmicos , Fenótipo , Receptor Cross-Talk , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...