Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7004, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919297

RESUMO

The absence of thermalization in certain isolated many-body systems is of great fundamental interest. Many-body localization (MBL) is a widely studied mechanism for thermalization to fail in strongly disordered quantum systems, but it is still not understood precisely how the range of interactions affects the dynamical behavior and the existence of MBL, especially in dimensions D > 1. By investigating nonequilibrium dynamics in strongly disordered D = 2 electron systems with power-law interactions ∝ 1/rα and poor coupling to a thermal bath, here we observe MBL-like, prethermal dynamics for α = 3. In contrast, for α = 1, the system thermalizes, although the dynamics is glassy. Our results provide important insights for theory, especially since we obtained them on systems that are much closer to the thermodynamic limit than synthetic quantum systems employed in previous studies of MBL. Thus, our work is a key step towards further studies of ergodicity breaking and quantum entanglement in real materials.

2.
Sci Adv ; 5(2): eaap7349, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30746483

RESUMO

After three decades of intensive research attention, the emergence of superconductivity in cuprates remains an unsolved puzzle. One major challenge has been to arrive at a satisfactory understanding of the unusual metallic "normal state" from which the superconducting state emerges upon cooling. A second challenge has been to achieve a unified understanding of hole- and electron-doped compounds. Here, we report detailed magnetoresistance measurements for the archetypal electron-doped cuprate Nd2-x Ce x CuO4+δ that, in combination with previous data, provide crucial links between the normal and superconducting states and between the electron- and hole-doped parts of the phase diagram. The characteristics of the normal state (magnetoresistance, quantum oscillations, and Hall coefficient) and those of the superconducting state (superfluid density and upper critical field) consistently indicate two-band (electron and hole) features and point to hole pocket-driven superconductivity in these nominally electron-doped materials. We show that the approximate Uemura scaling between the superconducting transition temperature and the superfluid density found for hole-doped cuprates also holds for the small hole component of the superfluid density in electron-doped cuprates.

3.
Sci Rep ; 7(1): 6853, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28761173

RESUMO

A main challenge that significantly impedes REBa2Cu3Ox (RE = rare earth) coated conductor applications is the low engineering critical current density J e because of the low superconductor fill factor in a complicated layered structure that is crucial for REBa2Cu3Ox to carry supercurrent. Recently, we have successfully achieved engineering critical current density beyond 2.0 kA/mm2 at 4.2 K and 16 T, by growing thick REBa2Cu3Ox layer, from ∼1.0 µm up to ∼3.2 µm, as well as controlling the pinning microstructure. Such high engineering critical current density, the highest value ever observed so far, establishes the essential role of REBa2Cu3Ox coated conductors for very high field magnet applications. We attribute such excellent performance to the dense c-axis self-assembled BaZrO3 nanorods, the elimination of large misoriented grains, and the suppression of big second phase particles in this ~3.2 µm thick REBa2Cu3Ox film.

4.
Sci Rep ; 7(1): 4589, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676703

RESUMO

A quantum critical point (QCP) is currently being conjectured for the BaFe2(As1-x P x )2 system at the critical value x c ≈ 0.3. In the proximity of a QCP, all thermodynamic and transport properties are expected to scale with a single characteristic energy, given by the quantum fluctuations. Such a universal behavior has not, however, been found in the superconducting upper critical field H c2. Here we report H c2 data for epitaxial thin films extracted from the electrical resistance measured in very high magnetic fields up to 67 Tesla. Using a multi-band analysis we find that H c2 is sensitive to the QCP, implying a significant charge carrier effective mass enhancement at the doping-induced QCP that is essentially band-dependent. Our results point to two qualitatively different groups of electrons in BaFe2(As1-x P x )2. The first one (possibly associated to hot spots or whole Fermi sheets) has a strong mass enhancement at the QCP, and the second one is insensitive to the QCP. The observed duality could also be present in many other quantum critical systems.

5.
Supercond Sci Technol ; 30(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28360455

RESUMO

We performed a feasibility study on a high-strength Bi2-x Pb x Sr2Ca2Cu3O10-x (Bi-2223) tape conductor for high-field solenoid applications. The investigated conductor, DI-BSCCO Type HT-XX, is a pre-production version of Type HT-NX, which has recently become available from Sumitomo Electric Industries (SEI). It is based on their DI-BSCCO Type H tape, but laminated with a high-strength Ni-alloy. We used stress-strain characterizations, single- and double-bend tests, easy- and hard-way bent coil-turns at various radii, straight and helical samples in up to 31.2 T background field, and small 20-turn coils in up to 17 T background field to systematically determine the electro-mechanical limits in magnet-relevant conditions. In longitudinal tensile tests at 77 K, we found critical stress- and strain-levels of 516 MPa and 0.57%, respectively. In three decidedly different experiments we detected an amplification of the allowable strain with a combination of pure bending and Lorentz loading to ≥ 0.92% (calculated elastically at the outer tape edge). This significant strain level, and the fact that it is multi-filamentary conductor and available in the reacted and insulated state, makes DI-BSCCO HT-NX highly suitable for very high-field solenoids, for which high current densities and therefore high loads are required to retain manageable magnet dimensions.

6.
Sci Rep ; 6: 36047, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27782196

RESUMO

Fe-based superconductors (FBS) present a large variety of compounds whose properties are affected to different extents by their crystal structures. Amongst them, the REFeAs(O,F) (RE1111, RE being a rare-earth element) is the family with the highest critical temperature Tc but also with a large anisotropy and Josephson vortices as demonstrated in the flux-flow regime in Sm1111 (Tc ∼ 55 K). Here we focus on the pinning properties of the lower-Tc Nd1111 in the flux-creep regime. We demonstrate that for H//c critical current density Jc at high temperatures is dominated by point-defect pinning centres, whereas at low temperatures surface pinning by planar defects parallel to the c-axis and vortex shearing prevail. When the field approaches the ab-planes, two different regimes are observed at low temperatures as a consequence of the transition between 3D Abrikosov and 2D Josephson vortices: one is determined by the formation of a vortex-staircase structure and one by lock-in of vortices parallel to the layers. This is the first study on FBS showing this behaviour in the full temperature, field, and angular range and demonstrating that, despite the lower Tc and anisotropy of Nd1111 with respect to Sm1111, this compound is substantially affected by intrinsic pinning generating a strong ab-peak in Jc.

7.
Sci Rep ; 4: 7305, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25467177

RESUMO

Ba(Fe(1-x)Co(x))(2)As(2) is the most tunable of the Fe-based superconductors (FBS) in terms of acceptance of high densities of self-assembled and artificially introduced pinning centres which are effective in significantly increasing the critical current density, J(c). Moreover, FBS are very sensitive to strain, which induces an important enhancement in critical temperature, T(c), of the material. In this paper we demonstrate that strain induced by the substrate can further improve J(c) of both single and multilayer films by more than that expected simply due to the increase in T(c). The multilayer deposition of Ba(Fe(1-x)Co(x))(2)As(2) on CaF2 increases the pinning force density (F(p) = J(c) × µ0H) by more than 60% compared to a single layer film, reaching a maximum of 84 GN/m(3) at 22.5 T and 4.2 K, the highest value ever reported in any 122 phase.

8.
Nat Commun ; 4: 1347, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23299897

RESUMO

Although high-temperature superconductor cuprates have been discovered for more than 25 years, superconductors for high-field application are still based on low-temperature superconductors, such as Nb(3)Sn. The high anisotropies, brittle textures and high manufacturing costs limit the applicability of the cuprates. Here we demonstrate that the iron superconductors, without most of the drawbacks of the cuprates, have a superior high-field performance over low-temperature superconductors at 4.2 K. With a CeO(2) buffer, critical current densities >10(6) A cm(-2) were observed in iron-chalcogenide FeSe(0.5)Te(0.5) films grown on single-crystalline and coated conductor substrates. These films are capable of carrying critical current densities exceeding 10(5) A cm(-2) under 30 tesla magnetic fields, which are much higher than those of low-temperature superconductors. High critical current densities, low magnetic field anisotropies and relatively strong grain coupling make iron-chalcogenide-coated conductors particularly attractive for high-field applications at liquid helium temperatures.

9.
Phys Rev Lett ; 101(17): 177004, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18999777

RESUMO

A c-axis magnetotransport and resistance noise study in La_(1.97)Sr_(0.03)CuO_(4) reveals clear signatures of glassiness, such as hysteresis, memory, and slow, correlated dynamics, but only at temperatures (T) well below the spin glass transition temperature T_(sg). The results strongly suggest the emergence of charge glassiness, or dynamic charge ordering, as a result of Coulomb interactions.

10.
Nature ; 453(7197): 903-5, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18509332

RESUMO

The recent synthesis of the superconductor LaFeAsO(0.89)F(0.11) with transition temperature T(c) approximately 26 K (refs 1-4) has been quickly followed by reports of even higher transition temperatures in related compounds: 41 K in CeFeAsO(0.84)F(0.16) (ref. 5), 43 K in SmFeAsO(0.9)F(0.1) (ref. 6), and 52 K in NdFeAsO(0.89)F(0.11) and PrFeAsO(0.89)F(0.11) (refs 7, 8). These discoveries have generated much interest in the mechanisms and manifestations of unconventional superconductivity in the family of doped quaternary layered oxypnictides LnOTMPn (Ln: La, Pr, Ce, Sm; TM: Mn, Fe, Co, Ni; Pn: P, As), because many features of these materials set them apart from other known superconductors. Here we report resistance measurements of LaFeAsO(0.89)F(0.11) at high magnetic fields, up to 45 T, that show a remarkable enhancement of the upper critical field B(c2) compared to values expected from the slopes dB(c2)/dT approximately 2 T K(-1) near T(c), particularly at low temperatures where the deduced B(c2)(0) approximately 63-65 T exceeds the paramagnetic limit. We argue that oxypnictides represent a new class of high-field superconductors with B(c2) values surpassing those of Nb(3)Sn, MgB(2) and the Chevrel phases, and perhaps exceeding the 100 T magnetic field benchmark of the high-T(c) copper oxides.

11.
Phys Rev Lett ; 99(4): 046405, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17678383

RESUMO

The relaxations of conductivity have been studied in the glassy regime of a strongly disordered two-dimensional electron system in Si after a temporary change of carrier density during the waiting time tw. Two types of response have been observed: (a) monotonic, where relaxations exhibit aging, i.e., dependence on history, determined by tw and temperature; (b) nonmonotonic, where a memory of the sample history is lost. The conditions that separate the two regimes also have been determined.

12.
Phys Rev Lett ; 99(21): 216401, 2007 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-18233233

RESUMO

Aging effects in the relaxations of conductivity of a two-dimensional electron system in Si have been studied as a function of carrier density. They reveal an abrupt change in the nature of the glassy phase at the metal-insulator transition (MIT): (a) while full aging is observed in the insulating regime, there are significant departures from full aging on the metallic side of the MIT, before the glassy phase disappears completely at a higher density n(g): (b) the amplitude of the relaxations peaks just below the MIT, and it is strongly suppressed in the insulating phase. Other aspects of aging, including large non-Gaussian noise and similarities to spin glasses, also have been discussed.

13.
Phys Rev Lett ; 96(3): 037403, 2006 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-16486767

RESUMO

The relaxations of conductivity have been studied in a strongly disordered two-dimensional (2D) electron system in Si after excitation far from equilibrium by a rapid change of carrier density ns at low temperatures T. The dramatic and precise dependence of the relaxations on ns and T strongly suggests (a) the transition to a glassy phase as T-->0, and (b) the Coulomb interactions between 2D electrons play a dominant role in the observed out-of-equilibrium dynamics.

14.
Phys Rev Lett ; 92(22): 226403, 2004 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-15245243

RESUMO

Studies of low-frequency resistance noise show that the dramatic change in the dynamics of the two-dimensional electron system (2DES) in Si that occurs near the metal-insulator transition (MIT) persists in high parallel magnetic fields B such that the 2DES is fully spin polarized. This strongly suggests that charge, as opposed to spin, degrees of freedom are responsible for this effect. In the metallic phase, however, noise is suppressed by a parallel B, pointing to the role of spins. At low B, the temperature dependence of conductivity in the metallic phase provides evidence for a MIT.

15.
Phys Rev Lett ; 91(7): 077201, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12935049

RESUMO

We have studied the low energy spin excitations in n-type CdMnTe based dilute magnetic semiconductor quantum wells. For magnetic fields for which the energies for the excitation of free carriers and Mn spins are almost identical, an anomalously large Knight shift is observed. Our findings suggest the existence of a magnetic-field-induced ferromagnetic order in these structures, which is in agreement with recent theoretical predictions [Phys. Rev. Lett. 91, 077202 (2003)]].

16.
Phys Rev Lett ; 89(26): 266802, 2002 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-12484847

RESUMO

We report on the observation of the Ising quantum Hall ferromagnet with Curie temperature T(C) as high as 2 K in a modulation-doped (Cd,Mn)Te heterostructure. In this system field-induced crossing of Landau levels occurs due to the giant spin-splitting effect. Magnetoresistance data, collected over a wide range of temperatures, magnetic fields, tilt angles, and electron densities, are discussed taking into account both Coulomb electron-electron interactions and s-d coupling to Mn spin fluctuations. The critical behavior of the resistance "spikes" at T-->T(C) corroborates theoretical suggestions that the ferromagnet is destroyed by domain excitations.

17.
Phys Rev Lett ; 88(18): 186803, 2002 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-12005710

RESUMO

Electrical transport measurements are reported on a 2DEG in a CdMnTe quantum well structure. The amplitude of the Shubnikov-de Haas oscillations show a distinct beating pattern with nodes corresponding to coincidences between the spin splitting and a half integer multiple of the cyclotron energy. The observed pattern of nodes is a direct consequence of the large Pauli paramagnetism induced by the s-d exchange interaction between the spins of electronic states and the localized magnetic moments.

18.
Phys Rev Lett ; 89(27): 276401, 2002 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-12513226

RESUMO

Studies of low-frequency resistance noise show that the glassy freezing of the two-dimensional (2D) electron system in the vicinity of the metal-insulator transition occurs in all Si inversion layers. The size of the metallic glass phase, which separates the 2D metal and the (glassy) insulator, depends strongly on disorder, becoming extremely small in high-mobility samples. The behavior of the second spectrum, an important fourth-order noise statistic, indicates the presence of long-range correlations between fluctuators in the glassy phase, consistent with the hierarchical picture of glassy dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...