Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Bioallied Sci ; 16(Suppl 2): S1690-S1694, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882763

RESUMO

Background: To assess and contrast the depth of penetration of conventional calcium hydroxide, nanoparticle calcium hydroxide, silver nanoparticles, and combination of nanoparticle calcium hydroxide and silver nanoparticles into dentinal tubules using confocal laser scanning microscope. Materials and Methods: Eighty human single-rooted teeth were decoronated and instrumented up to Protaper Universal F3. Teeth were separated into four groups at random (n = 20) following chemomechanical preparation. Group 1: Control Conventional Calcium Hydroxide; Group 2: Nanoparticle Calcium Hydroxide; group 3: Silver Nanoparticles; group 4: Combination of Nanoparticle Calcium Hydroxide and Silver Nanoparticles. With the use of lentulo spirals, medications were injected into the canals, stirred up with ultrasound, and then kept at 37°C for 24 hours. A 1 mm thick slice was obtained at 5 mm from the root apex by sectioning the root perpendicular to the long axis of the tooth and then put on a glass slide to measure the depth of penetration using a confocal laser microscope. Statistical Analysis: To quantify the depth of penetration among the four groups, a one-way ANOVA was used and post hoc-Tukey's test was used to compare between groups. Results: All of the groups were statistically significant, with group 4 showing the greatest depth of penetration, followed by group 2 and group 3. In contrast, all other groups in the intergroup comparison were statistically significant (P value 0.05) aside from the comparison of group 2 to group 3. Conclusion: Silver nanoparticles and nanoparticle calcium hydroxide together demonstrated greater penetration than calcium hydroxide, silver nanoparticles, and nanoparticle calcium hydroxide alone.

2.
J Pharm Bioallied Sci ; 16(Suppl 2): S1716-S1720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882788

RESUMO

Background: Bioactivity refers to the ability of a material to interact with living organisms or biological systems in a way that elicits a specific response. In the context of materials science and medicine, bioactivity is particularly important because it can determine the suitability of material for various applications. Objective: To evaluate and compare different commercially available calcium silicate-based materials regarding: 1. Morphological and elemental analysis at the dentin/material interface. 2. Calcium and silicon release and uptake by adjacent root canal dentine by evaluating the calcium and silicon incorporation depth in adjacent root canal dentin. Materials and Methods: This study examined four calcium silicate-based cements: Biodentine, MTA Angelus, BioAggregate, and MTA Plus. One hundred extracted human teeth with intact apices and no cavities were selected. Root sections measuring 3 mm in length were created at the mid-root level using low-speed diamond discs. Bioactivity was evaluated at 1, 7, 30, and 90 days, respectively. Results: The principal composition of the interfacial dentine layer and incorporation of calcium and silicon into dentine was measured at 1, 7, 30, and 90 days. Statistical analysis was performed by multiple comparisons using post hoc Tukey HSD. Conclusion: All the materials have shown bioactivity, i.e. release of calcium, silicon, and their uptake in the adjacent dentin in the presence of phosphate-buffered saline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...