Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(2): e0029523, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37017542

RESUMO

The ability of Bradyrhizobium spp. to nodulate and fix atmospheric nitrogen in soybean root nodules is critical to meeting humanity's nutritional needs. The intricacies of soybean bradyrhizobia-plant interactions have been studied extensively; however, bradyrhizobial ecology as influenced by phages has received somewhat less attention, even though these interactions may significantly impact soybean yield. In batch culture, four soybean bradyrhizobia strains, Bradyrhizobium japonicum S06B (S06B-Bj), B. japonicum S10J (S10J-Bj), Bradyrhizobium diazoefficiens USDA 122 (USDA 122-Bd), and Bradyrhizobium elkanii USDA 76T (USDA 76-Be), spontaneously (without apparent exogenous chemical or physical induction) produced tailed phages throughout the growth cycle; for three strains, phage concentrations exceeded cell numbers by ~3-fold after 48 h of incubation. Phage terminase large-subunit protein phylogeny revealed possible differences in phage packaging and replication mechanisms. Bioinformatic analyses predicted multiple prophage regions within each soybean bradyrhizobia genome, preventing accurate identification of spontaneously produced prophage (SPP) genomes. A DNA sequencing and mapping approach accurately delineated the boundaries of four SPP genomes within three of the soybean bradyrhizobia chromosomes and suggested that the SPPs were capable of transduction. In addition to the phages, S06B-Bj and USDA 76-Be contained three to four times more insertion sequences (IS) and large, conjugable, broad host range plasmids, both of which are known drivers of horizontal gene transfer (HGT) in soybean bradyrhizobia. These factors indicate that SPP along with IS and plasmids participate in HGT, drive bradyrhizobia evolution, and play an outsized role in bradyrhizobia ecology. IMPORTANCE Previous studies have shown that IS and plasmids mediate HGT of symbiotic nodulation (nod) genes in soybean bradyrhizobia; however, these events require close cell-to-cell contact, which could be limited in soil environments. Bacteriophage-assisted gene transduction through spontaneously produced prophages provides a stable means of HGT not limited by the constraints of proximal cell-to-cell contact. These phage-mediated HGT events may shape soybean bradyrhizobia population ecology, with concomitant impacts on soybean agriculture.


Assuntos
Bacteriófagos , Bradyrhizobium , Glycine max , Bacteriófagos/genética , Bradyrhizobium/genética , Sequência de Bases , Filogenia , Simbiose
2.
Poult Sci ; 100(4): 100994, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33610896

RESUMO

Wooden or woody breast (WB) is a myopathy of the pectoralis major in fast-growing broilers that influences the quality of breast meat and causes an economic loss in the poultry industry. The objective of this study was to evaluate growth and proteome differences between 5 genetic strains of broilers that yield WB and normal breast (NB) meat. Eight-week-old broilers were evaluated for the WB myopathy and divided into NB and WB groups. Differential expression of proteins was analyzed using 2-dimensional gel electrophoresis and LC-MS/MS to elucidate the mechanism behind the breast myopathy because of the genetic backgrounds of the birds. The percentages of birds with WB were 61.3, 68.8, 46.9, 45.2, and 87.5% for strains 1-5, respectively, indicating variability in WB myopathy among broiler strains. Birds from strains 1, 3, and 5 in the WB group were heavier than those in the NB group (P < 0.05). Woody breast meat from all strains were heavier than NB meat (P < 0.05). Within WB, strain 5 had a greater breast yield than strains 1, 3, and 4 (P < 0.0001). Woody breast from strains 2, 3, 4, and 5 had a greater breast yield than NB (P < 0.05). Six proteins were more abundant in NB of strain 5 than those of strains 2, 3, and 4, and these proteins were related to muscle growth, regeneration, contraction, apoptosis, and oxidative stress. Within WB, 14 proteins were differentially expressed between strain 5 and other strains, suggesting high protein synthesis, weak structural integrity, intense contraction, and oxidative stress in strain 5 birds. The differences between WB from strain 3 and strains 1, 2, and 4 were mainly glycolytic. In conclusion, protein profiles of broiler breast differed because of both broiler genetics and the presence of WB myopathy.


Assuntos
Galinhas , Carne , Doenças Musculares , Músculos Peitorais , Doenças das Aves Domésticas , Proteoma , Animais , Galinhas/genética , Cromatografia Líquida/veterinária , Carne/análise , Carne/normas , Doenças Musculares/genética , Doenças Musculares/veterinária , Músculos Peitorais/fisiopatologia , Doenças das Aves Domésticas/genética , Espectrometria de Massas em Tandem/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...