Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659816

RESUMO

Overexpression of PHGDH, the rate-limiting enzyme in the serine synthesis pathway, promotes melanomagenesis, melanoma cell proliferation, and survival of metastases in serine-low environments such as the brain. While PHGDH amplification explains PHGDH overexpression in a subset of melanomas, we find that PHGDH levels are universally increased in melanoma cells due to oncogenic BRAFV600E promoting PHGDH transcription through mTORC1-mediated translation of ATF4. Importantly, PHGDH expression was critical for melanomagenesis as depletion of PHGDH in genetic mouse models blocked melanoma formation. Despite BRAFV600E-mediated upregulation, PHGDH was further induced by exogenous serine restriction. Surprisingly, BRAFV600E inhibition diminished serine restriction-mediated PHGDH expression by preventing ATF4 induction, creating a potential vulnerability whereby melanoma cells could be specifically starved of serine by combining BRAFV600E inhibition with exogenous serine restriction. Indeed, we show that this combination promoted cell death in vitro and attenuated melanoma growth in vivo. This study identified a melanoma cell-specific PHGDH-dependent vulnerability.

2.
Cancer Res ; 84(3): 388-404, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193852

RESUMO

Inactivating mutations in PTEN are prevalent in melanoma and are thought to support tumor development by hyperactivating the AKT/mTOR pathway. Conversely, activating mutations in AKT are relatively rare in melanoma, and therapies targeting AKT or mTOR have shown disappointing outcomes in preclinical models and clinical trials of melanoma. This has led to the speculation that PTEN suppresses melanoma by opposing AKT-independent pathways, potentially through noncanonical functions beyond its lipid phosphatase activity. In this study, we examined the mechanisms of PTEN-mediated suppression of melanoma formation through the restoration of various PTEN functions in PTEN-deficient cells or mouse models. PTEN lipid phosphatase activity predominantly inhibited melanoma cell proliferation, invasion, and tumor growth, with minimal contribution from its protein phosphatase and scaffold functions. A drug screen underscored the exquisite dependence of PTEN-deficient melanoma cells on the AKT/mTOR pathway. Furthermore, activation of AKT alone was sufficient to counteract several aspects of PTEN-mediated melanoma suppression, particularly invasion and the growth of allograft tumors. Phosphoproteomics analysis of the lipid phosphatase activity of PTEN validated its potent inhibition of AKT and many of its known targets, while also identifying the AP-1 transcription factor FRA1 as a downstream effector. The restoration of PTEN dampened FRA1 translation by inhibiting AKT/mTOR signaling, and FRA1 overexpression negated aspects of PTEN-mediated melanoma suppression akin to AKT. This study supports AKT as the key mediator of PTEN inactivation in melanoma and identifies an AKT/mTOR/FRA1 axis as a driver of melanomagenesis. SIGNIFICANCE: PTEN suppresses melanoma predominantly through its lipid phosphatase function, which when lost, elevates FRA1 levels through AKT/mTOR signaling to promote several aspects of melanomagenesis.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Melanoma/genética , Melanoma/metabolismo , Transdução de Sinais/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Lipídeos
3.
Cancer Res ; 82(17): 3016-3031, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36052492

RESUMO

Somatic copy-number alterations (CNA) promote cancer, but the underlying driver genes may not be comprehensively identified if only the functions of the encoded proteins are considered. mRNAs can act as competitive endogenous RNAs (ceRNA), which sponge miRNAs to posttranscriptionally regulate gene expression in a protein coding-independent manner. We investigated the contribution of ceRNAs to the oncogenic effects of CNAs. Chromosome 1q gains promoted melanoma progression and metastasis at least in part through overexpression of three mRNAs with ceRNA activity: CEP170, NUCKS1, and ZC3H11A. These ceRNAs enhanced melanoma metastasis by sequestering tumor suppressor miRNAs. Orthogonal genetic assays with miRNA inhibitors and target site blockers, along with rescue experiments, demonstrated that miRNA sequestration is critical for the oncogenic effects of CEP170, NUCKS1, and ZC3H11A mRNAs. Furthermore, chromosome 1q ceRNA-mediated miRNA sequestration alleviated the repression of several prometastatic target genes. This regulatory RNA network was evident in other cancer types, suggesting chromosome 1q ceRNA deregulation as a common driver of cancer progression. Taken together, this work demonstrates that ceRNAs mediate the oncogenicity of somatic CNAs. SIGNIFICANCE: The function of CEP170, NUCKS1, and ZC3H11A mRNAs as competitive endogenous RNAs that sequester tumor suppressor microRNAs underlies the oncogenic activity of chromosome 1q gains.


Assuntos
Melanoma , MicroRNAs , RNA Longo não Codificante , Carcinogênese/genética , Cromossomos , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Melanoma/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética
4.
Cancers (Basel) ; 13(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808771

RESUMO

The miR-29 family of microRNAs is encoded by two clusters, miR-29b1~a and miR-29b2~c, and is regulated by several oncogenic and tumor suppressive stimuli. While in vitro evidence suggests a tumor suppressor role for miR-29 in melanoma, the mechanisms underlying its deregulation and contribution to melanomagenesis have remained elusive. Using various in vitro systems, we show that oncogenic MAPK signaling paradoxically stimulates transcription of pri-miR-29b1~a and pri-miR-29b2~c, the latter in a p53-dependent manner. Expression analyses in melanocytes, melanoma cells, nevi, and primary melanoma revealed that pri-miR-29b2~c levels decrease during melanoma progression. Inactivation of miR-29 in vivo with a miRNA sponge in a rapid melanoma mouse model resulted in accelerated tumor development and decreased overall survival, verifying tumor suppressive potential of miR-29 in melanoma. Through integrated RNA sequencing, target prediction, and functional assays, we identified the transcription factors MAFG and MYBL2 as bona fide miR-29 targets in melanoma. Our findings suggest that attenuation of miR-29b2~c expression promotes melanoma development, at least in part, by derepressing MAFG and MYBL2.

5.
Cancer Res ; 80(4): 912-921, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31744817

RESUMO

The cumbersome and time-consuming process of generating new mouse strains and multiallelic experimental animals often hinders the use of genetically engineered mouse models (GEMM) in cancer research. Here, we describe the development and validation of an embryonic stem cell (ESC)-GEMM platform for rapid modeling of melanoma in mice. The platform incorporates 12 clinically relevant genotypes composed of combinations of four driver alleles (LSL-BrafV600E, LSL-NrasQ61R, PtenFlox, and Cdkn2aFlox) and regulatory alleles to spatiotemporally control the perturbation of genes of interest. The ESCs produce high-contribution chimeras, which recapitulate the melanoma phenotypes of conventionally bred mice. Using the ESC-GEMM platform to modulate Pten expression in melanocytes in vivo, we highlighted the utility and advantages of gene depletion by CRISPR-Cas9, RNAi, or conditional knockout for melanoma modeling. Moreover, complementary genetic methods demonstrated the impact of Pten restoration on the prevention and maintenance of Pten-deficient melanomas. Finally, we showed that chimera-derived melanoma cell lines retain regulatory allele competency and are a powerful resource to complement ESC-GEMM chimera experiments in vitro and in syngeneic grafts in vivo Thus, when combined with sophisticated genetic tools, the ESC-GEMM platform enables rapid, high-throughput, and versatile studies aimed at addressing outstanding questions in melanoma biology.Significance: This study presents a high-throughput and versatile ES cell-based mouse modeling platform that can be combined with state-of-the-art genetic tools to address unanswered questions in melanoma in vivo See related commentary by Thorkelsson et al., p. 655.


Assuntos
Células-Tronco Embrionárias , Melanoma/genética , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Animais de Doenças , Melanócitos , Camundongos , Proteínas Proto-Oncogênicas B-raf/genética
6.
Macromol Biosci ; 17(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28485094

RESUMO

Upper Gastrointestinal Cancers (UGCs) are a leading cause of cancer-related deaths worldwide. Paclitaxel (PTX) is frequently used for the treatment of UGCs; however, low bioavailability, reduced solubility, and dose-dependent toxicity impede its therapeutic use. PAMAMG4.0 -NH2 -DHA is synthesized by linking amine-terminated fourth-generation poly(amidoamine) (PAMAMG4.0 -NH2 ) dendrimers with omega-3 fatty acid docosahexaenoic acid (DHA). Next, PAMAMG4.0 -NH2 -DHA-PTX (DHATX) and PAMAMG4.0 -NH2 -PTX (PAX) conjugates are synthesized by subsequent covalent binding of PTX with PAMAMG4.0 -NH2 -DHA and PAMAMG4.0 -NH2 , respectively. 1 H-NMR and MALDI-TOF analyses are performed to confirm conjugation of DHA to PAMAMG4.0 -NH2 and PTX to PAMAMG4.0 -NH2 -DHA. The cell viability, clonogenic cell survival, and flow cytometry analyses are used to determine the anticancer activity of PTX, PAX, and DHATX in UGC cell lines. The in vitro data indicate that treatment with DHATX is significantly more potent than PTX or PAX at inhibiting cellular proliferation, suppressing long-term survival, and inducing cell death in UGC cells.


Assuntos
Dendrímeros , Sistemas de Liberação de Medicamentos , Ácidos Graxos Ômega-3 , Neoplasias Gastrointestinais/tratamento farmacológico , Paclitaxel , Linhagem Celular Tumoral , Dendrímeros/síntese química , Dendrímeros/química , Dendrímeros/farmacologia , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/farmacologia , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Humanos , Paclitaxel/química , Paclitaxel/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...