Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730257

RESUMO

Bioluminescent probes are widely used to monitor biomedically relevant processes and cellular targets in living animals. However, the absorption and scattering of visible light by tissue drastically limit the depth and resolution of the detection of luminescence. Here we show that bioluminescent sources can be detected with magnetic resonance imaging by leveraging the light-mediated activation of vascular cells expressing a photosensitive bacterial enzyme that causes the conversion of bioluminescent emission into local changes in haemodynamic contrast. In the brains of rats with photosensitized vasculature, we used magnetic resonance imaging to volumetrically map bioluminescent xenografts and cell populations virally transduced to express luciferase. Detecting bioluminescence-induced haemodynamic signals from photosensitized vasculature will extend the applications of bioluminescent probes.

2.
Sci Adv ; 10(13): eadl2034, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536916

RESUMO

Direct detection of neural activity by functional magnetic resonance imaging (fMRI) has been a longstanding goal in neuroscience. A recent study argued that it is possible to detect neuroelectrical potentials using a specialized fMRI scanning approach the authors termed "direct imaging of neuronal activity" (DIANA). We implemented DIANA in anesthetized rats and measured responses to somatosensory stimulation, reproducing core findings of the original study. We show, however, that neural activity is neither sufficient nor necessary to produce such results. We use a combination of control conditions and simulations to demonstrate that DIANA signals can arise from nonideal aspects of the pulse sequence and specimen that help determine spatiotemporal characteristics of the data. Our analysis emphasizes a need for cautious interpretation and mechanistic evaluation of advanced fMRI techniques.


Assuntos
Imageamento por Ressonância Magnética , Neurônios , Ratos , Animais , Imageamento por Ressonância Magnética/métodos , Neurônios/fisiologia , Mapeamento Encefálico/métodos
3.
ACS Sens ; 8(10): 3855-3861, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37812688

RESUMO

The ability to monitor intracellular calcium concentrations using fluorescent probes has led to important insights into biological signaling processes at the cellular level. An important challenge is to relate such measurements to broader patterns of signaling across fields of view that are inaccessible to optical techniques. To meet this need, we synthesized molecular probes that couple calcium-binding moieties to lanthanide texaphyrins, resulting in complexes endowed with a diverse complement of magnetic and photophysical properties. We show that the probes permit intracellular calcium levels to be assessed by fluorescence, photoacoustic, and magnetic resonance imaging modalities and that they are detectable by multimodal imaging in brain tissue. This work thus establishes a route for monitoring signaling processes over a range of spatial and temporal scales.


Assuntos
Cálcio , Porfirinas , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos
4.
ACS Macro Lett ; 12(8): 1179-1184, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37540838

RESUMO

The concentrations of reactive oxygen species (ROS), e.g., H2O2, are often elevated in diseased tissue microenvironments. Therefore, the selective detection of ROS could enable new diagnostic methods or tools for chemical biology. Here, we report the synthesis of boronic ester-bis-norbornene core-cross-linked brush-arm star polymers (BASPs) with polyethylene glycol (PEG) or PEG-branch-spirocyclohexyl nitroxide (chex) shells. Size exclusion chromatography (SEC) and dynamic light scattering (DLS) showed that these BASPs have narrowly dispersed molar masses and average hydrodynamic diameters of 23 ± 2 nm, respectively. Moreover, due to their core-shell structures, these BASPs disassemble into bottlebrush fragments with improved selectivity for H2O2 over ROS such as peroxynitrite (ONOO-) and hypochlorite (-OCl). Finally, H2O2 induced disassembly of chex-containing BASPs induces a change in transverse magnetic relaxivity that can be detected via magnetic resonance imaging (MRI). Chex-BASPs may represent a valuable new diagnostic tool for H2O2 sensing.


Assuntos
Peróxido de Hidrogênio , Polímeros , Espécies Reativas de Oxigênio , Polietilenoglicóis/química , Imageamento por Ressonância Magnética
5.
Proc Natl Acad Sci U S A ; 120(18): e2220036120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094132

RESUMO

SNIO-CBP, a single-nanometer iron oxide (SNIO) nanoparticle functionalized with a type I collagen-binding peptide (CBP), was developed as a T1-weighted MRI contrast agent with only endogenous elements for fast and noninvasive detection of liver fibrosis. SNIO-CBP exhibits 6.7-fold higher relaxivity compared to a molecular gadolinium-based collagen-binding contrast agent CM-101 on a per CBP basis at 4.7 T. Unlike most iron oxide nanoparticles, SNIO-CBP exhibits fast elimination from the bloodstream with a 5.7 min half-life, high renal clearance, and low, transient liver enhancement in healthy mice. We show that a dose of SNIO-CBP that is 2.5-fold lower than that for CM-101 has comparable imaging efficacy in rapid (within 15 min following intravenous injection) detection of hepatotoxin-induced liver fibrosis using T1-weighted MRI in a carbon tetrachloride-induced mouse liver injury model. We further demonstrate the applicability of SNIO-CBP in detecting liver fibrosis in choline-deficient L-amino acid-defined high-fat diet mouse model of nonalcoholic steatohepatitis. These results provide a platform with potential for the development of high relaxivity, gadolinium-free molecular MRI probes for characterizing chronic liver disease.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Camundongos , Animais , Meios de Contraste/química , Cirrose Hepática/patologia , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Modelos Animais de Doenças , Nanopartículas Magnéticas de Óxido de Ferro , Colágeno/análise
6.
Nat Biomed Eng ; 7(3): 313-322, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36550300

RESUMO

Characterizing sources and targets of illumination in living tissue is challenging. Here we show that spatial distributions of light in tissue can be mapped by using magnetic resonance imaging (MRI) in the presence of photosensitive nanoparticle probes. Each probe consists of a reservoir of paramagnetic molecules enclosed by a liposomal membrane incorporating photosensitive lipids. Incident light causes the photoisomerization of the lipids and alters hydrodynamic exchange across the membrane, thereby affecting longitudinal relaxation-weighted contrast in MRI. We injected the nanoparticles into the brains of live rats and used MRI to map responses to illumination profiles characteristic of widely used applications of photostimulation, photometry and phototherapy. The responses deviated from simple photon propagation models and revealed signatures of light scattering and nonlinear responsiveness. Paramagnetic liposomal nanoparticles may enable MRI to map a broad range of optical phenomena in deep tissue and other opaque environments.


Assuntos
Lipossomos , Nanopartículas , Ratos , Animais , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Lipídeos
7.
Free Radic Biol Med ; 191: 241-248, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084790

RESUMO

Wide field measurements of nitric oxide (NO) signaling could help understand and diagnose the many physiological processes in which NO plays a key role. Magnetic resonance imaging (MRI) can support particularly powerful approaches for this purpose if equipped with molecular probes sensitized to NO and NO-associated targets. In this review, we discuss the development of MRI-detectable probes that could enable studies of nitrergic signaling in animals and potentially human subjects. Major families of probes include contrast agents designed to capture and report integrated NO levels directly, as well as molecules that respond to or emulate the activity of nitric oxide synthase enzymes. For each group, we outline the relevant molecular mechanisms and discuss results that have been obtained in vitro and in animals. The most promising in vivo data described to date have been acquired using NO capture-based relaxation agents and using engineered nitric oxide synthases that provide hemodynamic readouts of NO signaling pathway activation. These advances establish a beachhead for ongoing efforts to improve the sensitivity, specificity, and clinical applicability of NO-related molecular MRI technology.


Assuntos
Meios de Contraste , Óxido Nítrico , Animais , Humanos , Imageamento por Ressonância Magnética/métodos , Sondas Moleculares , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo
8.
Nat Neurosci ; 25(3): 390-398, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241803

RESUMO

The complex connectivity of the mammalian brain underlies its function, but understanding how interconnected brain regions interact in neural processing remains a formidable challenge. Here we address this problem by introducing a genetic probe that permits selective functional imaging of distributed neural populations defined by viral labeling techniques. The probe is an engineered enzyme that transduces cytosolic calcium dynamics of probe-expressing cells into localized hemodynamic responses that can be specifically visualized by functional magnetic resonance imaging. Using a viral vector that undergoes retrograde transport, we apply the probe to characterize a brain-wide network of presynaptic inputs to the striatum activated in a deep brain stimulation paradigm in rats. The results reveal engagement of surprisingly diverse projection sources and inform an integrated model of striatal function relevant to reward behavior and therapeutic neurostimulation approaches. Our work thus establishes a strategy for mechanistic analysis of multiregional neural systems in the mammalian brain.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Animais , Encéfalo/fisiologia , Corpo Estriado , Imageamento por Ressonância Magnética/métodos , Mamíferos , Ratos , Recompensa
9.
Adv Funct Mater ; 31(43)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34924913

RESUMO

Fiber drawing enables scalable fabrication of multifunctional flexible fibers that integrate electrical, optical and microfluidic modalities to record and modulate neural activity. Constraints on thermomechanical properties of materials, however, have prevented integrated drawing of metal electrodes with low-loss polymer waveguides for concurrent electrical recording and optical neuromodulation. Here we introduce two fabrication approaches: (1) an iterative thermal drawing with a soft, low melting temperature (Tm) metal indium, and (2) a metal convergence drawing with traditionally non-drawable high Tm metal tungsten. Both approaches deliver multifunctional flexible neural interfaces with low-impedance metallic electrodes and low-loss waveguides, capable of recording optically-evoked and spontaneous neural activity in mice over several weeks. We couple these fibers with a light-weight mechanical microdrive (1g) that enables depth-specific interrogation of neural circuits in mice following chronic implantation. Finally, we demonstrate the compatibility of these fibers with magnetic resonance imaging (MRI) and apply them to visualize the delivery of chemical payloads through the integrated channels in real time. Together, these advances expand the domains of application of the fiber-based neural probes in neuroscience and neuroengineering.

10.
Elife ; 102021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34931988

RESUMO

Molecular imaging could have great utility for detecting, classifying, and guiding treatment of brain disorders, but existing probes offer limited capability for assessing relevant physiological parameters. Here, we describe a potent approach for noninvasive mapping of cancer-associated enzyme activity using a molecular sensor that acts on the vasculature, providing a diagnostic readout via local changes in hemodynamic image contrast. The sensor is targeted at the fibroblast activation protein (FAP), an extracellular dipeptidase and clinically relevant biomarker of brain tumor biology. Optimal FAP sensor variants were identified by screening a series of prototypes for responsiveness in a cell-based bioassay. The best variant was then applied for quantitative neuroimaging of FAP activity in rats, where it reveals nanomolar-scale FAP expression by xenografted cells. The activated probe also induces robust hemodynamic contrast in nonhuman primate brain. This work thus demonstrates a potentially translatable strategy for ultrasensitive functional imaging of molecular targets in neuromedicine.


Assuntos
Neoplasias Encefálicas/enzimologia , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Imagem Molecular , Animais , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Saimiri
11.
J Neurosci Methods ; 364: 109372, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597714

RESUMO

Magnetic resonance imaging (MRI) is the most widely applied technique for brain-wide measurement of neural function in humans and animals. In conventional functional MRI (fMRI), brain signaling is detected indirectly, via localized activity-dependent changes in regional blood flow, oxygenation, and volume, to which MRI contrast can be readily sensitized. Although such hemodynamic fMRI methods are powerful tools for analysis of brain activity, they lack specificity for the many molecules and cell types that play functionally distinct roles in neural processing. A suite of techniques collectively known to as "molecular fMRI," addresses this limitation by permitting MRI-based detection of specific molecular processes in deep brain tissue. This review discusses how molecular fMRI is coming to be used in the study of neurochemical dynamics that mediate intercellular communication in the brain. Neurochemical molecular fMRI is a potentially powerful approach for mechanistic analysis of brain-wide function, but the techniques are still in early stages of development. Here we provide an overview of the major advances and results that have been achieved to date, as well as directions for further development.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Meios de Contraste , Humanos
12.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34654743

RESUMO

Magnetic nanoparticles are robust contrast agents for MRI and often produce particularly strong signal changes per particle. Leveraging these effects to probe cellular- and molecular-level phenomena in tissue can, however, be hindered by the large sizes of typical nanoparticle contrast agents. To address this limitation, we introduce single-nanometer iron oxide (SNIO) particles that exhibit superparamagnetic properties in conjunction with hydrodynamic diameters comparable to small, highly diffusible imaging agents. These particles efficiently brighten the signal in T1-weighted MRI, producing per-molecule longitudinal relaxation enhancements over 10 times greater than conventional gadolinium-based contrast agents. We show that SNIOs permeate biological tissue effectively following injection into brain parenchyma or cerebrospinal fluid. We also demonstrate that SNIOs readily enter the brain following ultrasound-induced blood-brain barrier disruption, emulating the performance of a gadolinium agent and providing a basis for future biomedical applications. These results thus demonstrate a platform for MRI probe development that combines advantages of small-molecule imaging agents with the potency of nanoscale materials.


Assuntos
Meios de Contraste/administração & dosagem , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Animais , Barreira Hematoencefálica , Meios de Contraste/farmacocinética , Nanopartículas Magnéticas de Óxido de Ferro/química , Tamanho da Partícula , Permeabilidade , Ratos
13.
ACS Sens ; 5(6): 1674-1682, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32436387

RESUMO

Detection of nitric oxide (NO) in biological systems is challenging due to both physicochemical properties of NO and limitations of current imaging modalities and probes. Magnetic resonance imaging (MRI) could be applied for studying NO in living tissue with high spatiotemporal resolution, but there is still a need for chemical agents that effectively sensitize MRI to biological NO production. To develop a suitable probe, we studied the interactions between NO and a library of manganese complexes with various oxidation states and molecular structures. Among this set, the manganese(III) complex with N,N'-(1,2-phenylene)bis(5-fluoro-2-hydroxybenzamide) showed favorable changes in longitudinal relaxivity upon addition of NO-releasing chemicals in vitro while also maintaining selectivity against other biologically relevant reactive nitrogen and oxygen species, making it a suitable NO-responsive contrast agent for T1-weighted MRI. When loaded with this compound, cells ectopically expressing nitric oxide synthase (NOS) isoforms showed MRI signal decreases of over 20% compared to control cells and were also responsive to NOS inhibition or calcium-dependent activation. The sensor could also detect endogenous NOS activity in antigen-stimulated macrophages and in a rat model of neuroinflammation in vivo. Given the key role of NO and associated reactive nitrogen species in numerous physiological and pathological processes, MRI approaches based on the new probe could be broadly beneficial for studies of NO-related signaling in living subjects.


Assuntos
Óxido Nítrico Sintase , Óxido Nítrico , Animais , Meios de Contraste , Imageamento por Ressonância Magnética , Oxigênio , Ratos
14.
Nat Commun ; 11(1): 2399, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404879

RESUMO

The ability to monitor molecules volumetrically throughout the body could provide valuable biomarkers for studies of healthy function and disease, but noninvasive detection of molecular targets in living subjects often suffers from poor sensitivity or selectivity. Here we describe a family of potent imaging probes that can be activated by molecules of interest in deep tissue, providing a basis for mapping nanomolar-scale analytes without the radiation or heavy metal content associated with traditional molecular imaging agents. The probes are reversibly caged vasodilators that induce responses detectable by hemodynamic imaging; they are constructed by combining vasoactive peptides with synthetic chemical appendages and protein blocking domains. We use this architecture to create ultrasensitive biotin-responsive imaging agents, which we apply for wide-field mapping of targets in rat brains using functional magnetic resonance imaging. We also adapt the sensor design for detecting the neurotransmitter dopamine, illustrating versatility of this approach for addressing biologically important molecules.


Assuntos
Imagem Molecular/métodos , Sondas Moleculares/metabolismo , Peptídeos/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Vasodilatadores/metabolismo , Animais , Biotina/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Células CHO , Cricetinae , Cricetulus , Dopamina/metabolismo , Células HEK293 , Humanos , Imageamento por Ressonância Magnética/métodos , Sondas Moleculares/química , Neurotransmissores/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Ratos , Reprodutibilidade dos Testes , Vasodilatadores/química
15.
Nature ; 580(7802): 239-244, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269346

RESUMO

The neurotransmitter dopamine is required for the reinforcement of actions by rewarding stimuli1. Neuroscientists have tried to define the functions of dopamine in concise conceptual terms2, but the practical implications of dopamine release depend on its diverse brain-wide consequences. Although molecular and cellular effects of dopaminergic signalling have been extensively studied3, the effects of dopamine on larger-scale neural activity profiles are less well-understood. Here we combine dynamic dopamine-sensitive molecular imaging4 and functional magnetic resonance imaging to determine how striatal dopamine release shapes local and global responses to rewarding stimulation in rat brains. We find that dopamine consistently alters the duration, but not the magnitude, of stimulus responses across much of the striatum, via quantifiable postsynaptic effects that vary across subregions. Striatal dopamine release also potentiates a network of distal responses, which we delineate using neurochemically dependent functional connectivity analyses. Hot spots of dopaminergic drive notably include cortical regions that are associated with both limbic and motor function. Our results reveal distinct neuromodulatory actions of striatal dopamine that extend well beyond its sites of peak release, and that result in enhanced activation of remote neural populations necessary for the performance of motivated actions. Our findings also suggest brain-wide biomarkers of dopaminergic function and could provide a basis for the improved interpretation of neuroimaging results that are relevant to learning and addiction.


Assuntos
Dopamina/metabolismo , Neostriado/metabolismo , Recompensa , Animais , Comportamento Aditivo , Mapeamento Encefálico , Aprendizagem , Imageamento por Ressonância Magnética , Masculino , Imagem Molecular , Motivação , Ratos , Ratos Sprague-Dawley
16.
Chem ; 6(3): 703-724, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32201749

RESUMO

The complex etiology of neurodegeneration continues to stifle efforts to develop effective therapeutics. New agents elucidating key pathways causing neurodegeneration might serve to increase our understanding and potentially lead to improved treatments. Here, we demonstrate that a water-soluble manganese(II) texaphyrin (MMn) is a suitable magnetic resonance imaging (MRI) contrast agent for detecting larger amyloid beta constructs. The imaging potential of MMn was inferred on the basis of in vitro studies and in vivo detection in Alzheimer's disease C. elegans models via MRI and ICP-MS. In vitro antioxidant- and cellular-based assays provide support for the notion that this porphyrin analog shows promise as a therapeutic agent able to mitigate the oxidative and nitrative toxic effects considered causal in neurodegeneration. The present report marks the first elaboration of an MRI-active metalloantioxidant that confers diagnostic and therapeutic benefit in Alzheimer's disease models without conjugation of a radioisotope, targeting moiety, or therapeutic payload.

17.
Nat Commun ; 11(1): 136, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919353

RESUMO

Targeted manipulations of neural activity are essential approaches in neuroscience and neurology, but monitoring such procedures in the living brain remains a significant challenge. Here we introduce a paramagnetic analog of the drug muscimol that enables targeted neural inactivation to be performed with feedback from magnetic resonance imaging. We validate pharmacological properties of the compound in vitro, and show that its distribution in vivo reliably predicts perturbations to brain activity.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Muscimol/farmacologia , Animais , Meios de Contraste/farmacologia , Agonistas GABAérgicos/química , Masculino , Muscimol/análogos & derivados , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/química
18.
Polym Chem ; 11(29): 4768-4779, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-33790990

RESUMO

Nitroxide-based organic-radical contrast agents (ORCAs) are promising as safe, next-generation magnetic resonance imaging (MRI) tools. Nevertheless, stimuli-responsive ORCAs that enable MRI monitoring of prodrug activation have not been reported; such systems could open new avenues for prodrug validation and image-guided drug delivery. Here, we introduce a novel "pro-ORCA" concept that addresses this challenge. By covalent conjugation of nitroxides and drug molecules (doxorubicin, DOX) to the same brush-arm star polymer (BASP) through chemically identical cleavable linkers, we demonstrate that pro-ORCA and prodrug activation, i.e., ORCA and DOX release, leads to significant changes in MRI contrast that correlate with cytotoxicity. This approach is shown to be general for a range of commonly used linker cleavage mechanisms (e.g., photolysis and hydrolysis) and release rates. Pro-ORCAs could find applications as research tools or clinically viable "reporter theranostics" for in vitro and in vivo MRI-correlated prodrug activation.

19.
J Am Chem Soc ; 141(40): 15751-15754, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31523957

RESUMO

Neurotransmitter-sensitive contrast agents for magnetic resonance imaging (MRI) have recently been used for mapping signaling dynamics in live animal brains, but paramagnetic sensors for T1-weighted MRI are usually effective only at micromolar concentrations that themselves perturb neurochemistry. Here we present an alternative molecular architecture for detecting neurotransmitters, using superparamagnetic iron oxide nanoparticles conjugated to tethered neurotransmitter analogs and engineered neurotransmitter binding proteins. Interactions between the nanoparticle conjugates result in clustering that is reversibly disrupted in the presence of neurotransmitter analytes, thus altering T2-weighted MRI signals. We demonstrate this principle using tethered dopamine and serotonin analogs, together with proteins selected for their ability to competitively bind either the analogs or the neurotransmitters themselves. Corresponding sensors for dopamine and serotonin exhibit target-selective relaxivity changes of up to 20%, while also operating below endogenous neurotransmitter concentrations. Semisynthetic magnetic particle sensors thus represent a promising path for minimally perturbative studies of neurochemical analytes.


Assuntos
Técnicas Biossensoriais/métodos , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Neurotransmissores/análise , Animais , Ligação Competitiva , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Meios de Contraste/administração & dosagem , Dopamina/análise , Ligantes , Nanopartículas de Magnetita/administração & dosagem , Ligação Proteica , Ratos
20.
ACS Macro Lett ; 8(4): 473-478, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31289694

RESUMO

The synthesis of functional poly(2-alkyl-2-oxazoline) (PAOx) copolymers with complex nanoarchitectures using a graft-through ring-opening metathesis polymerization (ROMP) approach is described. First, well-defined norbornene-terminated poly(2-ethyl-2-oxazoline) (PEtOx) macromonomers (MM) were prepared by cationic ringopening polymerization. ROMP of these MMs produced bottlebrush copolymers with PEtOx side chains. In addition, PEtOx-based branched MMs bearing a terminal alkyne group were prepared and conjugated to an azide-containing bis-spirocyclohexyl nitroxide via Cu-catalyzed azide-alkyne cycloaddition (CuAAC). ROMP of this branched MM, followed by in situ cross-linking, provided PEtOx-based brush-arm star polymers (BASPs) with nitroxide radicals localized at the core-shell interface. These PEtOx-based nitroxide-containing BASPs displayed relaxivity values on par with state-of-the-art polyethylene glycol (PEG)-based nitroxide materials, making them promising as organic radical contrast agents for metal-free magnetic resonance imaging (MRI).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...