Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroendocrinol ; 36(2): e13366, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38279680

RESUMO

The arcuate nucleus is a crucial hypothalamic brain region involved in regulating body weight homeostasis. Neurons within the arcuate nucleus respond to peripheral metabolic signals, such as leptin, and relay these signals via neuronal projections to brain regions both within and outside the hypothalamus, ultimately causing changes in an animal's behaviour and physiology. There is a substantial amount of evidence to indicate that leptin is intimately involved with the postnatal development of arcuate nucleus melanocortin circuitry. Further, it is clear that leptin signalling directly in the arcuate nucleus is required for circuitry development. However, as leptin receptor long isoform (Leprb) mRNA is expressed in multiple nuclei within the developing hypothalamus, including the postsynaptic target regions of arcuate melanocortin projections, this raises the possibility that leptin also signals in these nuclei to promote circuitry development. Here, we used RT-qPCR and RNAscope® to reveal the spatio-temporal pattern of Leprb mRNA in the early postnatal mouse hypothalamus. We found that Leprb mRNA expression increased significantly in the arcuate nucleus, ventromedial nucleus and paraventricular nucleus of the hypothalamus from P8, in concert with the leptin surge. In the dorsomedial nucleus of the hypothalamus, increases in Leprb mRNA were slightly later, increasing significantly from P12. Using duplex RNAscope®, we found Leprb co-expressed with Sim1, Pou3f2, Mc4r and Bdnf in the paraventricular nucleus at P8. Together, these data suggest that leptin may signal in a subset of neurons postsynaptic to arcuate melanocortin neurons, as well as within the arcuate nucleus itself, to promote the formation of arcuate melanocortin circuitry during the early postnatal period.


Assuntos
Leptina , Receptores para Leptina , Animais , Camundongos , Leptina/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Melanocortinas/metabolismo , RNA Mensageiro/metabolismo
2.
Biol Reprod ; 110(1): 130-139, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37801701

RESUMO

The endocrinology regulating ovulation of the desired number of oocytes in the ovarian cycle is well described, particularly in mono-ovulatory species. Less is known about the characteristics that make one follicle suitable for ovulation while most other follicles die by atresia. Bromodeoxyuridine (BrdU) injection was used to characterize granulosa cell proliferation rates in developing ovarian follicles in the estrous cycle of mice. This methodology allowed identification of follicle diameters of secondary (80-130 µm), follicle-stimulating hormone (FSH)-sensitive (130-170 µm), FSH-dependent (170-350 µm), and preovulatory (>350 µm) follicles. Few preovulatory-sized follicles were present in the ovaries of mice at estrus, the beginning of the cycle. Progressive increases were seen at metestrus and diestrus, when full accumulation of the preovulatory cohort (~10 follicles) occurred. BrdU pulse-chase studies determined granulosa cell proliferation rates in the 24-48 h before the follicle reached the preovulatory stage. This showed that slow-growing follicles were not able to survive to the preovulatory stage. Mathematical modeling of follicle growth rates determined that the largest follicles at the beginning of the cycle had the greatest chance of becoming preovulatory. However, smaller follicles could enter the preovulatory follicle pool if low numbers of large antral follicles were present at the beginning of the cycle. In this instance, rapidly growing follicles had a clear selection advantage. The developing follicle pool displays heterogeneity in granulosa cell proliferation rates, even among follicles at the same stage of development. This parameter appears to influence whether a follicle can ovulate or become atretic.


Assuntos
Folículo Ovariano , Ovulação , Humanos , Feminino , Camundongos , Animais , Bromodesoxiuridina/metabolismo , Folículo Ovariano/metabolismo , Ovulação/fisiologia , Ovário , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo
3.
J Neuroendocrinol ; 35(6): e13302, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280378

RESUMO

Polycystic ovary syndrome (PCOS) is a female endocrine disorder that is associated with prenatal exposure to excess androgens. In prenatally androgenized (PNA) mice that model PCOS, GABAergic neural transmission to and innervation of GnRH neurons is increased. Evidence suggests that elevated GABAergic innervation originates in the arcuate nucleus (ARC). We hypothesized that GABA-GnRH circuit abnormalities are a direct consequence of PNA, resulting from DHT binding to androgen receptor (AR) in the prenatal brain. However, whether prenatal ARC neurons express AR at the time of PNA treatment is presently unknown. We used RNAScope in situ hybridization to localize AR mRNA (Ar)-expressing cells in healthy gestational day (GD) 17.5 female mouse brains and to assess coexpression levels in specific neuronal phenotypes. Our study revealed that less than 10% of ARC GABA cells expressed Ar. In contrast, we found that ARC kisspeptin neurons, critical regulators of GnRH neurons, were highly colocalized with Ar. Approximately 75% of ARC Kiss1-expressing cells also expressed Ar at GD17.5, suggesting that ARC kisspeptin neurons are potential targets of PNA. Investigating other neuronal populations in the ARC we found that ~50% of pro-opiomelanocortin (Pomc) cells, 22% of tyrosine hydroxylase (Th) cells, 8% of agouti-related protein (Agrp) cells and 8% of somatostatin (Sst) cells express Ar. Lastly, RNAscope in coronal sections showed Ar expression in the medial preoptic area (mPOA), and the ventral part of the lateral septum (vLS). These Ar-expressing regions were highly GABAergic, and 22% of GABA cells in the mPOA and 25% of GABA cells in the vLS also expressed Ar. Our findings identify specific neuronal phenotypes in the ARC, mPOA, and vLS that are androgen sensitive in late gestation. PNA-induced functional changes in these neurons may be related to the development of impaired central mechanisms associated with PCOS-like features.


Assuntos
Androgênios , Síndrome do Ovário Policístico , Humanos , Camundongos , Feminino , Gravidez , Animais , Androgênios/metabolismo , Receptores Androgênicos/metabolismo , Kisspeptinas/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios GABAérgicos/fisiologia , Encéfalo/metabolismo , Virilismo/metabolismo
4.
Endocrinology ; 164(6)2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37191144

RESUMO

Polycystic ovarian syndrome (PCOS) is the leading cause of anovulatory infertility and is a heterogenous condition associated with a range of reproductive and metabolic impairments. While its etiology remains unclear, hyperandrogenism and impaired steroid negative feedback have been identified as key factors underpinning the development of PCOS-like features both clinically and in animal models. We tested the hypothesis that androgen signaling in kisspeptin-expressing neurons, which are key drivers of the neuroendocrine reproductive axis, is critically involved in PCOS pathogenesis. To this end, we used a previously validated letrozole (LET)-induced hyperandrogenic mouse model of PCOS in conjunction with Cre-lox technology to generate female mice exhibiting kisspeptin-specific deletion of androgen receptor (KARKO mice) to test whether LET-treated KARKO females are protected from the development of reproductive and metabolic PCOS-like features. LET-treated mice exhibited hyperandrogenism, and KARKO mice exhibited a significant reduction in the coexpression of kisspeptin and androgen receptor mRNA compared to controls. In support of our hypothesis, LET-treated KARKO mice exhibited improved estrous cyclicity, ovarian morphology, and insulin sensitivity in comparison to LET-treated control females. However, KARKO mice were not fully protected from the effects of LET-induced hyperandrogenism and still exhibited reduced corpora lutea numbers and increased body weight gain. These data indicate that increased androgen signaling in kisspeptin-expressing neurons plays a critical role in PCOS pathogenesis but highlight that other mechanisms are also involved.


Assuntos
Hiperandrogenismo , Síndrome do Ovário Policístico , Animais , Feminino , Camundongos , Androgênios/metabolismo , Modelos Animais de Doenças , Hiperandrogenismo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Letrozol , Neurônios/metabolismo , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
5.
J Endocrinol ; 253(2): 53-62, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35099409

RESUMO

Female anti-Müllerian hormone (AMH) overexpressing (Thy1.2-AMHTg/0) mice experience fetal resorption (miscarriage) by mid-gestation. This study examined whether the ovary, uterine implantation sites and hypothalamus are potential sites of AMH action, as AMH type-2 receptor (AMHR2) expression is reported in each tissue. Pregnancy in Thy1.2-AMHTg/0 mice was compared to wild-type (WT) mice via histological examination of implantation sites, hormone assays, embryo culture and embryo transfer. Uterine AMH and AMHR2 expression was examined by RT-qPCR and immunohistochemistry. The first signs of fetal resorption in the Thy1.2-AMHTg/0 dams occurred at embryonic day 9.5 (E9.5) with 100% of fetuses resorbing by E13.5. Cultured embryos from Thy1.2-AMHTg/0 dams had largely normal developmental rates but a small proportion experienced a minor developmental delay relative to embryos from WT dams. However, embryos transferred from WT donor females always failed to survive to term when transferred into Thy1.2-AMHTg/0 dams. Amh and Amhr2 mRNA was detected in the gravid uterus but at very low levels relative to expression in the ovaries. Progesterone and estradiol levels were not significantly different between WT and Thy1.2-AMHTg/0 dams during pregnancy but luteinizing hormone (LH) levels were significantly elevated in Thy1.2-AMHTg/0 dams at E9.5 and E13.5 relative to WT dams. Collectively, these experiments suggest that AMH overexpression does not cause fetal resorption through an effect on oocytes or preimplantation embryo development. The Thy1.2-AMHTg/0 fetal resorption phenotype is nearly identical to that of transgenic LH overexpression models, suggesting that neuroendocrine mechanisms may be involved in the cause of the miscarriage.


Assuntos
Aborto Espontâneo , Hormônio Antimülleriano , Aborto Espontâneo/metabolismo , Animais , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Transferência Embrionária , Feminino , Reabsorção do Feto/metabolismo , Humanos , Camundongos , Oócitos/metabolismo , Gravidez
6.
J Neuroendocrinol ; 33(12): e13058, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748236

RESUMO

Prenatal exposure to excess androgens is associated with the development of polycystic ovary syndrome (PCOS). In prenatally androgenised (PNA) mice, a model of PCOS, progesterone receptor (PR) protein expression is reduced in arcuate nucleus (ARC) GABA neurons. This suggests a mechanism for PCOS-related impaired steroid hormone feedback and implicates androgen excess with respect to inducing transcriptional repression of the PR-encoding gene Pgr in the ARC. However, the androgen sensitivity of ARC neurons and the relative gene expression of PRs over development and following prenatal androgen exposure remain unknown. Here, we used a quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) of microdissected ARC to determine the relative androgen receptor (Ar) and progesterone receptor (Pgr) gene expression in PNA and control mice at five developmental timepoints. In a two-way analysis of variance, none of the genes examined showed expression changes with a statistically significant interaction between treatment and age, although PgrA showed a borderline interaction. For all genes, there was a statistically significant main effect of age on expression levels, reflecting a general increase in expression with increasing age, regardless of treatment. For PgrB and Ar, there was a statistically significant main effect of treatment, indicating a change in expression following PNA (increased for PgrB and decreased for Ar), regardless of age. For PgrA, there was a borderline main effect of treatment, suggesting a possible change in expression following PNA, regardless of age. PgrAB gene expression changes showed no significant main effect of treatment. We additionally examined androgen and progesterone responsiveness specifically in P60 ARC GABA neurons using RNAScope® (Advanced Cell Diagnostics, Inc.) in situ hybridization. This analysis revealed that Pgr and Ar were expressed in the majority of ARC GABA neurons in normal adult females. However, our RNAScope® analysis did not show significant changes in Pgr or Ar expression within ARC GABA neurons following PNA. Lastly, because GABA drive to gonadotropin-releasing hormone neurons is increased in PNA, we hypothesised that PNA mice would show increased expression of glutamic acid decarboxylase (GAD), the rate-limiting enzyme in GABA production. However, the RT-qPCR showed that the expression of GAD encoding genes (Gad1 and Gad2) was unchanged in adult PNA mice compared to controls. Our findings indicate that PNA treatment can impact Pgr and Ar mRNA expression in adulthood. This may reflect altered circulating steroid hormones in PNA mice or PNA-induced epigenetic changes in the regulation of Pgr and Ar gene expression in ARC neurons.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Receptores Androgênicos/genética , Receptores de Progesterona/genética , Virilismo , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/crescimento & desenvolvimento , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Crescimento e Desenvolvimento/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Progesterona/metabolismo , Virilismo/embriologia , Virilismo/genética , Virilismo/metabolismo
7.
J Neuroendocrinol ; 33(9): e13020, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34423876

RESUMO

The arcuate nucleus of the hypothalamus is central in the regulation of body weight homeostasis through its ability to sense peripheral metabolic signals and relay them, through neural circuits, to other brain areas, ultimately affecting physiological and behavioural changes. The early postnatal development of these neural circuits is critical for normal body weight homeostasis, such that perturbations during this critical period can lead to obesity. The role for peripheral regulators of body weight homeostasis, including leptin, insulin and ghrelin, in this postnatal development is well described, yet some of the fundamental processes underpinning axonal and dendritic growth remain unclear. Here, we hypothesised that molecules known to regulate axonal and dendritic growth processes in other areas of the developing brain would be expressed in the postnatal arcuate nucleus and/or target nuclei where they would function to mediate the development of this circuitry. Using state-of-the-art RNAscope® technology, we have revealed the expression patterns of genes encoding Dcc/Netrin-1, Robo1/Slit1 and Fzd5/Wnt5a receptor/ligand pairs in the early postnatal mouse hypothalamus. We found that individual genes had unique expression patterns across developmental time in the arcuate nucleus, paraventricular nucleus of the hypothalamus, ventromedial nucleus of the hypothalamus, dorsomedial nucleus of the hypothalamus, median eminence and, somewhat unexpectedly, the third ventricle epithelium. These observations indicate a number of new molecular players in the development of neural circuits regulating body weight homeostasis, as well as novel molecular markers of tanycyte heterogeneity.


Assuntos
Genes Controladores do Desenvolvimento/fisiologia , Hipotálamo/metabolismo , Rede Nervosa/embriologia , Terceiro Ventrículo/metabolismo , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/crescimento & desenvolvimento , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos/genética , Gravidez , Terceiro Ventrículo/citologia , Terceiro Ventrículo/crescimento & desenvolvimento
8.
J Neuroendocrinol ; 33(8): e12999, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216402

RESUMO

Although polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility worldwide, the aetiology of the disorder remains poorly defined. Animal-based evidence highlights the brain as a prime suspect in both the development and maintenance of PCOS. Prenatally androgenised (PNA) models of PCOS exhibit excessive GABAergic wiring associated with PCOS-like reproductive deficits in adulthood, with aberrant brain wiring detected as early as postnatal day (P) 25, prior to disease onset, in the PNA mouse. The mechanisms underlying this aberrant brain wiring remain unknown. Microglia, the immune cells of the brain, are regulators of neuronal wiring across development, mediating both the formation and removal of neuronal inputs. Here, we tested the hypothesis that microglia play a role in the excessive GABAergic wiring that leads to PCOS-like features in the PNA brain. Using specific immunolabelling, microglia number and morphology associated with activation states were analysed in PNA and vehicle-treated controls across developmental timepoints, including embryonic day 17.5, P0, P25 and P60 (n = 7-14 per group), and in two regions of the hypothalamus implicated in fertility regulation. At P0, fewer amoeboid microglia were observed in the rostral preoptic area (rPOA) of PNA mice. However, the greatest changes were observed at P25, with PNA mice exhibiting fewer total microglia, and specifically fewer "sculpting" microglia, in the rPOA. Based on these findings, we assessed microglia-mediated refinement of GABAergic synaptic terminals at two developmental stages of peak synaptic refinement: P7 and P15 (n = 7 per group). PNA mice showed a reduction in the uptake of GABAergic synaptic material at P15. These findings reveal time-specific changes in the microglia population and refinement of GABAergic inputs in a mouse model of PCOS driven by prenatal androgen excess and suggest a role for microglia in shaping the atypical brain wiring associated with the development of PCOS features.


Assuntos
Encéfalo/patologia , Microglia/fisiologia , Síndrome do Ovário Policístico/psicologia , Animais , Modelos Animais de Doenças , Feminino , Neurônios GABAérgicos/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Hipotálamo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Síndrome do Ovário Policístico/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/psicologia
9.
J Neuroendocrinol ; 33(5): e12972, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33896057

RESUMO

Chronic stress exerts multiple negative effects on the physiology and health of an individual. In the present study, we examined hypothalamic, pituitary and endocrine responses to 14 days of chronic variable stress (CVS) in male and female C57BL/6J mice. In both sexes, CVS induced a significant decrease in body weight and enhanced the acute corticosterone stress response, which was accompanied by a reduction in thymus weight only in females. However, single-point blood measurements of basal prolactin, thyroid-stimulating hormone, luteinising hormone, growth hormone and corticosterone levels taken at the end of the CVS were not different from those of controls. Similarly, pituitary mRNA expression of Fshb, Lhb, Prl and Gh was unchanged by CVS, although Pomc and Tsh were significantly elevated. Within the adrenal medulla, mRNA for Th, Vip and Gal were elevated following CVS. Avp transcript levels within the paraventricular nucleus of the hypothalamus were increased by CVS; however, levels of Gnrh1, Crh, Oxt, Sst, Trh, Ghrh, Th and Kiss1 remained unchanged. Oestrous cycles were lengthened slightly by CVS and ovarian histology revealed a reduction in the number of preovulatory follicles and corpora lutea. Taken together, these observations indicate that 14 days of CVS induces an up-regulation of the neuroendocrine stress axis and creates a mild disruption of female reproductive function. However, the lack of changes in other neuroendocrine axes controlling anterior and posterior pituitary secretion suggest that most neuroendocrine axes are relatively resilient to CVS.


Assuntos
Hipotálamo/metabolismo , Folículo Ovariano/metabolismo , Hipófise/metabolismo , Pró-Opiomelanocortina/metabolismo , Estresse Psicológico/metabolismo , Animais , Corpo Lúteo/metabolismo , Corticosterona/metabolismo , Feminino , Hormônio do Crescimento/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Prolactina/metabolismo , Tireotropina/metabolismo
10.
Life (Basel) ; 10(4)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344561

RESUMO

Maternal obesity during pregnancy is associated with a greater risk of poor health outcomes in offspring, including obesity, metabolic disorders, and anxiety, however the incidence of these diseases differs for males and females. Similarly, animal models of maternal obesity have reported sex differences in offspring, for both metabolic outcomes and anxiety-like behaviors. The ventromedial nucleus of the hypothalamus (VMN) is a brain region known to be involved in the regulation of both metabolism and anxiety, and is well documented to be sexually dimorphic. As the VMN is largely composed of glutamatergic neurons, which are important for its functions in modulating metabolism and anxiety, we hypothesized that maternal obesity may alter the number of glutamatergic neurons in the offspring VMN. We used a mouse model of a maternal high-fat diet (mHFD), to examine mRNA expression of the glutamatergic neuronal marker Satb2 in the mediobasal hypothalamus of control and mHFD offspring at GD17.5. We found sex differences in Satb2 expression, with mHFD-induced upregulation of Satb2 mRNA in the mediobasal hypothalamus of female offspring, compared to controls, but not males. Using immunohistochemistry, we found an increase in the number of SATB2-positive cells in female mHFD offspring VMN, compared to controls, which was localized to the rostral region of the nucleus. These data provide evidence that maternal nutrition during gestation alters the developing VMN, possibly increasing its glutamatergic drive of offspring in a sex-specific manner, which may contribute to sexual dimorphism in offspring health outcomes later in life.

11.
Int J Mol Sci ; 20(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650536

RESUMO

Maternal obesity during pregnancy increases risk for neurodevelopmental disorders in offspring, although the underlying mechanisms remain unclear. Epigenetic deregulation associates with many neurodevelopmental disorders, and recent evidence indicates that maternal nutritional status can alter chromatin marks in the offspring brain. Thus, maternal obesity may disrupt epigenetic regulation of gene expression during offspring neurodevelopment. Using a C57BL/6 mouse model, we investigated whether maternal high fat diet (mHFD)-induced obesity alters the expression of genes previously implicated in the etiology of neurodevelopmental disorders within the Gestational Day 17.5 (GD 17.5) offspring hippocampus. We found significant two-fold upregulation of oxytocin receptor (Oxtr) mRNA in the hippocampus of male, but not female, GD 17.5 offspring from mHFD-induced obese dams (p < 0.05). To determine whether altered histone binding at the Oxtr gene promoter may underpin these transcriptional changes, we then performed chromatin immunoprecipitation (ChIP). Consistent with the Oxtr transcriptional changes, we observed increased binding of active histone mark H3K9Ac at the Oxtr transcriptional start site (TSS) in the hippocampus of mHFD male (p < 0.05), but not female, offspring. Together, these data indicate an increased vulnerability of male offspring to maternal obesity-induced changes in chromatin remodeling processes that regulate gene expression in the developing hippocampus, and contributes to our understanding of how early life nutrition affects the offspring brain epigenome.


Assuntos
Hipocampo/metabolismo , Histonas/metabolismo , Obesidade/metabolismo , Receptores de Ocitocina/metabolismo , Caracteres Sexuais , Animais , Dieta Hiperlipídica , Feminino , Lisina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Ocitocina/genética
12.
Psychoneuroendocrinology ; 96: 132-141, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29940426

RESUMO

Maternal obesity during pregnancy can impact long-term health, predisposition to disease, and risk of neurological disorders in offspring. This may arise from disruption to epigenetic processes during offspring brain development. Using a maternal high fat diet (mHFD) mouse model, we investigated the expression of genes encoding epigenetic regulators in the brains of gestational day (GD) 17.5 mHFD offspring. We found significant, regionally unique changes in expression of epigenetic regulators in the developing brain of mHFD offspring compared to controls, with Gadd45b downregulated in medial prefrontal cortex, Mecp2 downregulated in amygdala, and sex-specific downregulation of Crebbp, Dnmt3b, and Mecp2 in male mHFD hippocampus. Decreased Mecp2 in the amygdala was associated with significant upregulation of the Mecp2-repressed gene, Tbr1, and an increased number of TBR1+ glutamatergic neurons in the basomedial nucleus of the amygdala. Tbr1 upregulation in amygdala was also observed in postnatal day 8 (P8) mHFD offspring, and levels of glutamate receptor gene Grin2b, and Fos, a marker for neuronal activity, were increased. Indications of heightened excitatory drive in mHFD offspring amygdala were associated with an anxiety-like phenotype, with mHFD offspring displaying altered ultrasonic vocalization characteristics at P8, and adult female mHFD offspring spending decreased time on the open arm of the Elevated Plus Maze. Together, this data provides insight into sex-specific offspring vulnerability to perinatal mHFD programming of anxiety-like behaviors.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Epigênese Genética/fisiologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Transtornos de Ansiedade , Encéfalo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , Feminino , Hipocampo , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Proteínas com Domínio T
13.
J Endocrinol ; 237(2): R47-R64, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29545398

RESUMO

The hypothalamus is a key centre for regulation of vital physiological functions, such as appetite, stress responsiveness and reproduction. Development of the different hypothalamic nuclei and its major neuronal populations begins prenatally in both altricial and precocial species, with the fine tuning of neuronal connectivity and attainment of adult function established postnatally and maintained throughout adult life. The perinatal period is highly susceptible to environmental insults that, by disrupting critical developmental processes, can set the tone for the establishment of adult functionality. Here, we review the most recent knowledge regarding the major postnatal milestones in the development of metabolic, stress and reproductive hypothalamic circuitries, in the rodent, with a particular focus on perinatal programming of these circuitries by hormonal and nutritional influences. We also review the evidence for the continuous development of the hypothalamus in the adult brain, through changes in neurogenesis, synaptogenesis and epigenetic modifications. This degree of plasticity has encouraging implications for the ability of the hypothalamus to at least partially reverse the effects of perinatal mal-programming.


Assuntos
Hormônios/fisiologia , Hipotálamo/crescimento & desenvolvimento , Fenômenos Fisiológicos da Nutrição , Envelhecimento/fisiologia , Animais , Feminino , Hormônios/farmacologia , Hipotálamo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Gravidez , Reprodução/fisiologia , Roedores , Maturidade Sexual/fisiologia
14.
Gen Comp Endocrinol ; 257: 211-219, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28666855

RESUMO

The androgen 11-ketotestosterone (11KT) can induce many of the changes associated with silvering, i.e., the transformation of a non-migrating 'yellow' eel into a migrating 'silver' eel. We posited that plasticity in spectral sensitivity of the eye, accompanied by expression of different opsins in the retina during silvering, is controlled by 11KT. To test this hypothesis, mRNA levels of freshwater (fwo) and seawater (swo) opsins and of the two androgen receptors (ara and arb) in retinas of wild-caught female shortfinned eels, Anguilla australis were compared. Swo expression was much higher (3-4 orders of magnitude) and fwo expression substantially lower in silver than in yellow eels, whereas mRNA levels of both ars did not differ between stages. Yellow eel retinas exposed to 11KT in vitro exhibited a robust dose-dependent increase in swo, but weak decreasing effects on fwo transcript abundance were inconsistent. Similarly, increased retinal swo expression was seen after in vivo treatment of yellow eels with 11KT implants, whereas expression of fwo remained unaffected. Lastly, co-treatment with 11KT and the androgen receptor blocker flutamide was undertaken to determine whether 11KT exerts its effects through nuclear androgen receptors. Flutamide did not block 11KT-affected expression of any target gene, neither in vivo nor in vitro. We conclude that 11KT greatly increases the abundance of swo, identifying the androgen as an important regulator of the opsin switch during silvering in freshwater eels.


Assuntos
Anguilla , Opsinas de Bastonetes/metabolismo , Testosterona/análogos & derivados , Animais , Feminino , Masculino , Testosterona/metabolismo
15.
J Clin Invest ; 127(11): 3923-3936, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28945198

RESUMO

Netrin-1 is a secreted protein that was first identified 20 years ago as an axon guidance molecule that regulates midline crossing in the CNS. It plays critical roles in various tissues throughout development and is implicated in tumorigenesis and inflammation in adulthood. Despite extensive studies, no inherited human disease has been directly associated with mutations in NTN1, the gene coding for netrin-1. Here, we have identified 3 mutations in exon 7 of NTN1 in 2 unrelated families and 1 sporadic case with isolated congenital mirror movements (CMM), a disorder characterized by involuntary movements of one hand that mirror intentional movements of the opposite hand. Given the diverse roles of netrin-1, the absence of manifestations other than CMM in NTN1 mutation carriers was unexpected. Using multimodal approaches, we discovered that the anatomy of the corticospinal tract (CST) is abnormal in patients with NTN1-mutant CMM. When expressed in HEK293 or stable HeLa cells, the 3 mutated netrin-1 proteins were almost exclusively detected in the intracellular compartment, contrary to WT netrin-1, which is detected in both intracellular and extracellular compartments. Since netrin-1 is a diffusible extracellular cue, the pathophysiology likely involves its loss of function and subsequent disruption of axon guidance, resulting in abnormal decussation of the CST.


Assuntos
Transtornos dos Movimentos/genética , Netrina-1/genética , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Animais , Sequência Conservada , Feminino , Frequência do Gene , Estudos de Associação Genética , Células HEK293 , Células HeLa , Heterozigoto , Humanos , Masculino , Camundongos , Mutação de Sentido Incorreto , Linhagem , Deleção de Sequência
16.
Int J Dev Neurosci ; 53: 18-25, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27326907

RESUMO

Maternal obesity during pregnancy is associated with chronic maternal, placental, and fetal inflammation; and it elevates the risk for offspring obesity. Changes in the development of the hypothalamus, a brain region that regulates body weight and energy balance, are emerging as important determinants of offspring risk, but such changes are only beginning to be defined. Here we focused on the hypothesis that the pathological exposure of developing hypothalamic astrocytes to cytokines would alter their development. A maternal high-fat diet (mHFD) mouse model was used to investigate changes in hypothalamic astrocytes in the fetus during late gestation and in early neonates by using immunochemistry, confocal microscopy, and qPCR. The number of astrocytes and the proportion of proliferating astrocytes was significantly higher in the arcuate nucleus (ARC) and the supraoptic nucleus (SON) of the hypothalamus at both ages compared to control offspring from normal weight pregnancies. Supplemental to this we found that cultured fetal hypothalamic astrocytes proliferated significantly in response to IL6 (10ng/ml), one of the cytokines significantly elevated in fetuses of obese dams, via the JAK/STAT3 signaling pathway. Thus, maternal obesity during pregnancy stimulated the proliferation and thereby increased numbers of astrocytes in the fetal as well as early neonatal hypothalamus, which may be driven, during fetal life, by IL6.


Assuntos
Astrócitos/metabolismo , Desenvolvimento Fetal/fisiologia , Hipotálamo/embriologia , Hipotálamo/patologia , Neurônios/fisiologia , Obesidade , Animais , Astrócitos/efeitos dos fármacos , Peso Corporal , Bromodesoxiuridina/metabolismo , Proliferação de Células , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento , Proteína Glial Fibrilar Ácida/metabolismo , Interleucina-6/farmacologia , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , Proteína Oncogênica v-akt/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
17.
Endocrinology ; 157(6): 2229-42, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27054554

RESUMO

The arcuate nucleus (ARC) regulates body weight in response to blood-borne signals of energy balance. Blood-brain barrier (BBB) permeability in the ARC is determined by capillary endothelial cells (ECs) and tanycytes. Tight junctions between ECs limit paracellular entry of blood-borne molecules into the brain, whereas EC transporters and fenestrations regulate transcellular entry. Tanycytes appear to form a barrier that prevents free diffusion of blood-borne molecules. Here we tested the hypothesis that gestation in an obese mother alters BBB permeability in the ARC of offspring. A maternal high-fat diet model was used to generate offspring from normal-weight (control) and obese dams (OffOb). Evans Blue diffusion into the ARC was higher in OffOb compared with controls, indicating that ARC BBB permeability was altered. Vessels investing the ARC in OffOb had more fenestrations than controls, although the total number of vessels was not changed. A reduced number of tanycytic processes in the ARC of OffOb was also observed. The putative transporters, Lrp1 and dysferlin, were up-regulated and tight junction components were differentially expressed in OffOb compared with controls. These data suggest that maternal obesity during pregnancy can compromise BBB formation in the fetus, leading to altered BBB function in the ARC after birth.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Obesidade/fisiopatologia , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Encéfalo/patologia , Dieta Hiperlipídica , Azul Evans/metabolismo , Feminino , Citometria de Fluxo , Imunoglobulina G/metabolismo , Imuno-Histoquímica , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Junções Íntimas/metabolismo
18.
Sci Rep ; 6: 21896, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26902390

RESUMO

Although recovery following a stroke is limited, undamaged neurons under the right conditions can establish new connections and take on-board lost functions. Sonic hedgehog (Shh) signaling is integral for developmental axon growth, but its role after injury has not been fully examined. To investigate the effects of Shh on neuronal sprouting after injury, we used an in vitro model of glial scar, whereby cortical astrocytes were mechanically traumatized to mimic reactive astrogliosis observed after stroke. This mechanical trauma impaired neurite outgrowth from post-natal cortical neurons plated on top of reactive astrocytes. Addition of Shh to the media, however, resulted in a concentration-dependent increase in neurite outgrowth. This response was inhibited by cyclopamine and activated by oxysterol 20(S)-hydroxycholesterol, both of which modulate the activity of the Shh co-receptor Smoothened (Smo), demonstrating that Shh-mediated neurite outgrowth is Smo-dependent. In addition, neurite outgrowth was not associated with an increase in Gli-1 transcription, but could be inhibited by PP2, a selective inhibitor of Src family kinases. These results demonstrate that neurons exposed to the neurite growth inhibitory environment associated with a glial scar can be stimulated by Shh, with signaling occurring through a non-canonical pathway, to overcome this suppression and stimulate neurite outgrowth.


Assuntos
Astrócitos/efeitos dos fármacos , Gliose/metabolismo , Proteínas Hedgehog/farmacologia , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Astrócitos/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Técnicas de Cocultura , Regulação da Expressão Gênica , Gliose/genética , Gliose/patologia , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Hidroxicolesteróis/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neurônios/citologia , Neurônios/metabolismo , Pressão , Cultura Primária de Células , Pirimidinas/farmacologia , Transdução de Sinais , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Estresse Mecânico , Alcaloides de Veratrum/farmacologia , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/genética , Quinases da Família src/metabolismo
19.
J Neurol Sci ; 351(1-2): 140-145, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25813273

RESUMO

Congenital mirror movements (CMM) is a disorder characterized by unintentional mirroring in homologous motor systems of voluntary movements on the opposite side, usually affecting the distal upper extremities. Genetic analyses have revealed involvement of three genes (DCC, RAD51, and DNAL4). We sought to distinguish whether different phenotypes of CMM exist, and if so, whether they might map to different causative genes. We studied 14 individuals across five families with dominantly-inherited CMM. We used accelerometer gloves to analyse the fine detail of index finger tapping movements, and applied standard genetic methodology to analyse DNA samples. Two forms of mirroring were distinguished: 'actual' in which the mirroring followed precisely the movements of the voluntary hand, and 'fractionated' in which the mirroring was saccadic. We found that actual mirroring was characteristic of individuals in a family with a RAD51 mutation, and fractionated more characteristic of a family with a DCC mutation. These findings are suggestive of specific genotype-phenotype correlations in CMM. Three heterozygous individuals (one RAD51; two DCC) showed no apparent mirroring on visual inspection, although mirroring was detectable with the accelerometer gloves. Thus, subclinical mirroring may be present even when undetectable on clinical observation.


Assuntos
Transtornos dos Movimentos/genética , Rad51 Recombinase/genética , Receptores de Superfície Celular/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Idoso , Dineínas do Axonema/genética , Receptor DCC , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Adulto Jovem
20.
Neurosci Biobehav Rev ; 58: 46-62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25524877

RESUMO

It is increasingly appreciated that perinatal events can set an organism on a life-long trajectory for either health or disease, resilience or risk. One early life variable that has proven critical for optimal development is the nutritional environment in which the organism develops. Extensive research has documented the effects of both undernutrition and overnutrition, with strong links evident for an increased risk for obesity and metabolic disorders, as well as adverse mental health outcomes. Recent work has highlighted a critical role of the immune system, in linking diet with long term health and behavioral outcomes. The present review will summarize the recent literature regarding the interactions of diet, immunity, and behavior.


Assuntos
Comportamento , Dieta , Imunidade/fisiologia , Obesidade/etiologia , Animais , Feminino , Humanos , Doenças Metabólicas/etiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...