Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(24): 17234-17235, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38831772

RESUMO

Diana Berman, Agnieszka Jastrzebska, Massimiliano Papi, and Andreas Rosenkranz introduce the RSC Advances themed issue on 2D materials and their applications.

2.
Phys Chem Chem Phys ; 25(48): 33081-33093, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38037878

RESUMO

The work function (WF) of perovskite materials is essential for developing optoelectronic devices enabling efficient charge transfer at their interfaces. Perovskite's WF can be tuned by MXenes, a new class of two-dimensional (2D) early transition metal carbides, nitrides, and carbonitrides. Their variable surface terminations or the possibility of introducing elemental dopants could advance perovskites. However, the influence of doped-MXenes on perovskite materials is still not fully understood and elaborated. This study provides mechanistic insight into verifying the tunability of MAPbI3 WF by hybridizing with fluorine-terminated Ti3C2Tx (F-MXene) and nitrogen-doped Ti3C2Tx (N-MXene). We first reveal the interfacial interaction between MAPbI3 and MXenes via X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and photoluminescence spectroscopy (PL). UPS supported by density functional theory (DFT) calculations allowed the description of the influence of F and N on MXene's WF. Furthermore, we developed MAPbI3/MXene heterostructures using F- and N-MXenes. The F-MXenes extended the most WF of MAPbI3 from 4.50 eV up to 3.00 eV, compared to only a small shift for N-MXene. The underlying mechanism was charge transfer from low WF F-MXene to MAPbI3, as demonstrated by PL quenching in MAPbI3/F-MXene heterostructures. Altogether, this work showcases the potential of fluorine-doped MXenes over nitrogen-doped MXenes in advancing perovskite heterostructures, thus opening a door for efficient optoelectronic devices.

3.
Sci Rep ; 13(1): 19498, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945713

RESUMO

The study aimed to investigate the usefulness of the Running-based Anaerobic Sprint Test (RAST) in anaerobic performance estimation in trained and untrained girls U12, and the effect of an 8-week training period in female U12 soccer players on anaerobic performance. A comparative study of two structurally different anaerobic tests was performed to reach the goal. The study was designed as a non-randomized, controlled before-and-after trial. Fourteen female soccer players (FSP) and twelve untrained girls (UNT) participated in the study. During that time, all participants were subjected to school's physical education classes and the FSP additionally participated in regular soccer training. The anaerobic performance was evaluated twice, within 8-weeks period, using the traditional Wingate test (WAnT) and the RAST. A significant increase in the anaerobic performance of the FSP was noted (p < 0.05). In both tests peak, average, and relative power were significantly improved (p < 0.005). Nevertheless, strong, statistically significant (p < 0.05) correlation coefficients (0.50 < r < 0.70) were found for pre-training measurements between the WAnT and the RAST power parameters in absolute values. In UNT group significant improvement was found in peak, average and min power (p < 0.05) in the RAST. The improvement in anaerobic performance after training along with the strong correlation noted between the WAnT and the RAST power parameters prove the usefulness of the RAST in assessing anaerobic capacity in female youth athletes. Its simplicity encourages its use in monitoring anaerobic capacity in both trained and untrained girls.


Assuntos
Desempenho Atlético , Futebol , Adolescente , Feminino , Humanos , Limiar Anaeróbio , Anaerobiose , Atletas , Teste de Esforço
4.
Adv Mater ; 35(42): e2301850, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37715336

RESUMO

The vertical integration of distinct 2D materials in van der Waals (vdW) heterostructures provides the opportunity for interface engineering and modulation of electronic as well as optical properties. However, scarce experimental studies reveal many challenges for vdW heterostructures, hampering the fine-tuning of their electronic and optical functionalities. Optically active MXenes, the most recent member of the 2D family, with excellent hydrophilicity, rich surface chemistry, and intriguing optical properties, are a novel 2D platform for optoelectronics applications. Coupling MXenes with various 2D materials into vdW heterostructures can open new avenues for the exploration of physical phenomena of novel quantum-confined nanostructures and devices. Therefore, the fundamental basis and recent findings in vertical vdW heterostructures composed of MXenes as a primary component and other 2D materials as secondary components are examined. Their robust designs and synthesis approaches that can push the boundaries of light-harvesting, transition, and utilization are discussed, since MXenes provide a unique playground for pursuing an extraordinary optical response or unusual light conversion features/functionalities. The recent findings are finally summarized, and a perspective for the future development of next-generation vdW multifunctional materials enriched by MXenes is provided.

5.
ACS Appl Mater Interfaces ; 15(37): 44075-44086, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37682978

RESUMO

Solution-based processing offers advantages for producing thin films due to scalability, low cost, simplicity, and benignity to the environment. Here, we develop conductive and photoactivated self-cleaning reduced graphene oxide (rGO)/Ti3CNTx MXene thin films via spin coating under ambient conditions. The addition of a thin rGO layer on top of Ti3CNTx resulted in up to 45-fold improvement in the environmental stability of the film compared to the bare Ti3CNTx film. The optimized rGO/Ti3CNTx thin film exhibits an optical transmittance of 74% in the visible region of the spectrum and a sheet resistance of 19 kΩ/sq. The rGO/Ti3CNTx films show high rhodamine B discoloration activity upon light irradiation. Under UV irradiation, the electrically conductive MXene in combination with in situ formed semiconducting titanium oxide induces photogenerated charge carriers, which could potentially be used in photocatalysis. On the other hand, due to film transparency, white light irradiation can bleach the adsorbed dye via photolysis. This study opens the door for using MXene thin films as multifunctional coatings with conductive and potentially self-cleaning properties.

6.
Sci Rep ; 13(1): 15882, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741888

RESUMO

The study was conducted to determine thecorrelation between the selected measures of aerobic physical efficiency and changes in the temple surface temperature in response to light and heavy exercise. 25 physically active men aged 19-25 were recruited for the study. They performed a graded exercise test on a cycle ergometer to measure maximum power (Pmax) and a test verifying the value of maximum oxygen uptake (VO2max). Then, two 3-min submaximal efforts with constant-intensity of 2.2 W·kgLBM-1 and 5 W·kgLBM-1, respectively were performed. During the constant-intensity efforts, the temperature of the temple surface was measured. Then, the difference between the temperature of the temple measured at the end of the exercise and the temperature measured at the beginning of the exercise was calculated (ΔT1-2.2, ΔT1-5, respectively). It was shown that ΔT1-2.2 correlated statistically significantly with VO2max (ml·min-1·kg-1) (r = 0.49; p = 0.01) and Pmax (W·kg-1) (r = 0.41, p = 0.04). Moreover, ΔT1-5 correlated statistically significantly with VO2max (l·min-1) (r = - 0.41; p = 0.04). Changes in body surface temperature in response to light exercise positively correlate with measurements of aerobic physical efficiency, such as VO2max and Pmax. When the exercise intensity is high (5 W·kgLBM-1), the correlation between exercise body temperature changes and VO2max becomes negative.


Assuntos
Consumo de Oxigênio , Oxigênio , Masculino , Humanos , Consumo de Oxigênio/fisiologia , Temperatura , Exercício Físico/fisiologia , Temperatura Corporal/fisiologia , Teste de Esforço
7.
Biomater Adv ; 153: 213581, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572598

RESUMO

Two-dimensional (2D) transition metal carbides/nitrides (MXenes) are potential antibacterial agents. However, their activity against microorganisms is not fully understood. It could relate to MXenes' surface which further influences their biocidal action. Herein, we report no continuous biocidal activity for delaminated 2D niobium-based MXenes (Nbn+1XnTx) such as Nb2CTx and Nb4C3Tx prepared with HF/TMAOH protocol. Biocidal activity towards Bacillus subtilis and Staphylococcus aureus microorganisms was achieved by surface-functionalization with lysozyme macromolecule. MXenes' engineering with lysozyme changed MXene's surface charge from negative into positive thus enabling the elimination of bacteria cells during 48 h of incubation. In contrast, Nb4C3Tx functionalized with collagen stimulated the growth of Bacillus subtilis by 225 %, showing MXene's biocompatibility towards this particular strain. Altogether, our results show that MXenes are incredibly bio-tunable. Opposing bio-effects such as antimicrobial or growth-stimulating can be achieved towards various microorganisms with rational surface engineering.


Assuntos
Muramidase , Nióbio , Antibacterianos/farmacologia , Bacillus subtilis
8.
Environ Sci Pollut Res Int ; 30(26): 69024-69041, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37129809

RESUMO

In an era of increasing environmental awareness, it is very important to work towards eliminating or at least reducing as many harmful industrial substances as possible. However, the implementation of green chemistry methods for wastewater treatment can be difficult especially due to complexity, the high cost of reagents, and the required long process time. This paper focuses on using waste iron (WI) to remove two kinds of amaranth dye commonly used in industry. To enhance the process, UV irradiation and hydrogen peroxide were used. The novelty of the research was the use of efficient and reusable WI as a heterogeneous catalyst in the process. WI material characteristics was done before and after the process using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray fluorescence (XRF). Zeta potential, size characterization, circularity, and direct band gap were also determined. As a result of treatment complete decolorization of both dyes was achieved, as well as 99% absorbance removal after 15-min process time. The total organic carbon (TOC) decrease after 60-min process time was in the range from 86.6 to 89.8%. Modified pseudo-second-order reaction reflects obtained results of treatment efficiency. Treatment results, confirmed by WI material characterization, indicate satisfactory stability of the catalyst and good oxidation capacity.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Corantes/química , Corante Amaranto , Oxirredução , Microscopia Eletrônica de Varredura , Catálise , Resíduos , Resíduos Industriais , Peróxido de Hidrogênio/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química
9.
Small Methods ; 7(8): e2201252, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36879487

RESUMO

Two-dimensional MXenes are excellent photocatalysts. However, their low oxidation stability makes controlling photocatalytic processes challenging. For the first time, this work elucidates the influence of the oxidation stabilization of model 2D Ti3 C2 Tx MXene on its optical and photocatalytic properties. The delaminated MXene is synthesized via two well-established approaches: hydrofluoric acid/tetramethylammonium hydroxide (TMAOH-MXene) and minimum intensive layer delamination with hydrochloric acid/lithium fluoride (MILD-MXene) and then stabilized by L-ascorbic acid. Both MXenes at a minimal concentration of 32 mg L-1 show almost 100% effectiveness in the 180-min photocatalytic decomposition of 25 mg L-1 model methylene blue and bromocresol green dyes. Industrial viability is achieved by decomposing a commercial textile dye having 100 times higher concentration than that of model dyes. In such conditions, MILD-MXene is the most efficient due to less wide optical band gap than TMAOH-MXene. The MILD-MXene required only few seconds of UV light, simulated white light, or 500 nm (cyan) light irradiation to fully decompose the dye. The photocatalytic mechanism of action is associated with the interplay between surface dye adsorption and the reactive oxygen species generated by MXene under light irradiation. Importantly, both MXenes are successfully reused and retained approximately 70% of their activity.

10.
Materials (Basel) ; 16(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36837159

RESUMO

Dyes are highly toxic and persistent in the environment. Their presence in water causes environmental and social problems. Dyes must be effectively removed from the water. A UV/ZVI/H2O2 process was applied to decompose two organic dyes, AM E123 and AM ACID. A commercial ZVI product, Ferox Flow, was used, and its properties were determined using SEM and XRF. The zeta potential, surface area, and optical properties of ZVI were also determined. The efficiency of dye removal in optimal conditions was 85.5% and 80.85% for AM E123 and AM ACID, respectively. Complete decolorization was observed in all samples. The decomposition of both dyes occurred according to a modified pseudo-second-order reaction and there was a statistically significant correlation between the TOC decrease, pH, and process time. The catalyst was observed to have high stability, and this was not affected by the performance of the treatment process even after the third cycle, as confirmed by the results of the catalyst surface analysis and iron diffusion test. Slight differences in process efficiency were observed after each cycle. The need for only a small amount of catalyst to decompose AM E123 and AM ACID, coupled with the ability to reuse the catalyst without the need for prior preparation, may reduce catalyst purchase costs.

11.
IEEE Trans Cybern ; 53(2): 1348-1359, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34936564

RESUMO

This article presents a comprehensive approach for time-series classification. The proposed model employs a fuzzy cognitive map (FCM) as a classification engine. Preprocessed input data feed the employed FCM. Map responses, after a postprocessing procedure, are used in the calculation of the final classification decision. The time-series data are staged using the moving-window technique to capture the time flow in the training procedure. We use a backward error propagation algorithm to compute the required model hyperparameters. Four model hyperparameters require tuning. Two are crucial for the model construction: 1) FCM size (number of concepts) and 2) window size (for the moving-window technique). Other two are important for training the model: 1) the number of epochs and 2) the learning rate (for training). Two distinguishing aspects of the proposed model are worth noting: 1) the separation of the classification engine from pre- and post-processing and 2) the time flow capture for data from concept space. The proposed classifier joins the key advantage of the FCM model, which is the interpretability of the model, with the superior classification performance attributed to the specially designed pre- and postprocessing stages. This article presents the experiments performed, demonstrating that the proposed model performs well against a wide range of state-of-the-art time-series classification algorithms.

12.
IEEE Trans Cybern ; 53(7): 4665-4676, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34951861

RESUMO

A fuzzy cognitive map (FCM) is a graph-based knowledge representation model wherein the connections of the nodes (edges) represent casual relationships between the knowledge items associated with the nodes. This model has been applied to solve various modeling tasks including forecasting time series. In the original FCM-based forecasting model, causal relationships among concepts of the FCM remain unchanged. However, causal relationships may change in time. Therefore, we propose a new learning method for training an FCM resulting in an adaptive FCM which consists of several sub-FCMs. It can select different sub-FCMs at different moments. In an active processing scenario, in which we deal with a large-scale time series with new data being continuously generated, a forecasting model built on the old data should be updated when the new data arrive. Furthermore, retraining an FCM from scratch entails increasing computing overhead that will become a serious obstacle in many practical scenarios. To overcome the above-mentioned shortcomings, this study offers an original design setting in which the FCM is updated by knowledge-guidance learning mechanism for the first time. Compared with the existing classical forecasting models, the proposed model shows higher accuracy and efficiency. Its increased performance is demonstrated through a series of reported experimental studies.


Assuntos
Algoritmos , Lógica Fuzzy , Fatores de Tempo , Aprendizagem , Cognição
13.
Biomolecules ; 12(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36291724

RESUMO

The metabolization of carbohydrates by Streptococcus mutans leads to the formation of lactic acid in the oral cavity, which can consequently accelerate the degradation of dental implants fabricated from commercially available microcrystalline Ti. Microstructure influences surface topography and hence interaction between bacteria cells and Ti surfaces. This work offers the first description of the effect of S. mutans on the surface topography and properties of nanostructured bulk Ti, which is a promising candidate for modern narrow dental implants owing to its superior mechanical strength. It was found that S. mutans incubation resulted in the slight, unexpected decrease of surface nanoroughness, which was previously developed owing to privileged oxidation in areas of closely spaced boundaries. However, despite the changes in nanoscale surface topography, bacteria incubation did not reduce the high level of protection afforded by the oxide layer formed on the nanostructured Ti surface. The results highlight the need-hitherto ignored-to consider Ti microstructure when analyzing its behavior in the presence of carbohydrate-metabolizing bacteria.


Assuntos
Implantes Dentários , Streptococcus mutans , Corrosão , Titânio/química , Propriedades de Superfície , Óxidos/farmacologia , Carboidratos/farmacologia , Ácido Láctico/metabolismo
14.
Biology (Basel) ; 11(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-36101329

RESUMO

The aim of this study was to determine whether there are associations between cardiovascular fitness (and aerobic capacity) and changes in temporal skin temperature during and after a single bout of high-intensity exercise. Twenty-three men with varying levels of physical activity (VO2max: 59.03 ± 11.19 (mL/kg/min), body mass 71.5 ± 10.4 (kg), body height 179 ± 8 (cm)) participated in the study. Each subject performed an incremental test and, after a 48-h interval, a 110%Pmax power test combined with an analysis of the thermal parameters, heart rate recovery and heart rate variability. Thermal radiation density from the body surface (temple) was measured using a Sonel KT384 thermal imaging camera immediately after warm-up (Tb), immediately after exercise (Te) and 120 sec after the end of exercise (Tr). The differences between measurements were then calculated. The correlation analysis between the thermal and cardiovascular function parameters during the recovery period showed strong positive associations between the Tr-Te difference and measures of cardiovascular fitness (50 < r < 69, p < 0.05). For example, the correlation coefficient between Tr-Te and VO2max reached 0.55 and between Tr-Te and Pmax reached 0.68. The results obtained indicate that the measurement of temporal temperature during and after an intense 3-min bout of exercise can be used to assess aerobic physical capacity and cardiovascular fitness.

15.
Bioinorg Chem Appl ; 2022: 9574245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111206

RESUMO

The article presents the results of in vitro studies on cytotoxicity and antibacterial activity of new MTA-type cements, developed on the basis of the sintered tricalcium silicate enriched with ZnO, along with an agent introducing the radiopacity in the form of ZrO2. The new materials have been developed to ensure that their physical and chemical properties are suited for endodontic applications. The cements were evaluated via characterisation of setting time, compressive strength, as well as translucency on X-ray images, and bioactivity in the simulated body fluid (SBF). The µCT was used to test the influence of the ZrO2 grains in the powder component on the microstructure of the produced cement. Then, the cytotoxic action of the cements was evaluated by applying a reference L-929 cell line. The conditions of the culture upon contact with the tested materials or with extracts from the cements were assessed using image analysis or an MTT colorimetric assay. Two strains of streptococci, Streptococcus mutans and Streptococcus sanguinis, were used to study the antibacterial activity of the tested cements with ZrO2 acting as the agent introducing the radiopacity. The new cements are characterised by appropriate properties as far as retrograde root canal filling is concerned.

16.
Sci Rep ; 12(1): 14366, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999240

RESUMO

Rapidly developing nanotechnologies and their integration in daily applications may threaten the natural environment. While green methods of decomposing organic pollutants have reached maturity, remediation of inorganic crystalline contaminants is major problem due to their low biotransformation susceptibility and the lack of understanding of material surface-organism interactions. Herein, we have used model inorganic 2D Nb-based MXenes coupled with a facile shape parameters analysis approach to track the mechanism of bioremediating 2D ceramic nanomaterials with green microalgae Raphidocelis subcapitata. We have found that microalgae decomposed the Nb-based MXenes due to surface-related physicochemical interactions. Initially, single and few-layered MXene nanoflakes attached to microalgae surfaces, which slightly reduced algal growth. But with prolonged surface interaction, the microalgae oxidized MXene nanoflakes and further decomposed them into NbO and Nb2O5. Since these oxides were nontoxic to microalgal cells, they consumed Nb-oxide nanoparticles by an uptake mechanism thus enabling further microalgae recovery after 72 h of water treatment. The uptake-associated nutritional effects were also reflected by cells' increased size, smoothed shape and changed growth rates. Based on these findings, we conclude that short- and long-term presence of Nb-based MXenes in freshwater ecosystems might cause only negligible environmental effects. Notably, by using 2D nanomaterials as a model system, we show evidence of the possibility of tracking even fine material shape transformations. In general, this study answers an important fundamental question about the surface interaction-associated processes that drive the mechanism of 2D nanomaterials' bioremediation as well as provides the fundamental basis for further short- and long-term investigations on the environmental effects of inorganic crystalline nanomaterials.


Assuntos
Microalgas , Poluentes Químicos da Água , Biodegradação Ambiental , Ecossistema , Microalgas/metabolismo , Nióbio , Poluentes Químicos da Água/metabolismo
17.
Materials (Basel) ; 15(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35888358

RESUMO

High-temperature fuel cells (namely, molten carbonate and solid oxide; MCFCs and SOFCs) require the cathode to be designed to maximize oxygen catalytic reduction, oxygen ion transport, electrical conductivity, and gas transport. This then leads to the optimization of the volume fraction and morphology of phases, as they are a pathway for electrons, ions, and gases to be continuous and self-interpenetrating. Apart from the functional properties, the cathode must be mechanically stable to prevent cracking during fuel cell assembly and operation. The manufacturing process of the composite cathode was optimized to meet such requirements in this research work. The tape casting technique and further firing process were used to fabricate the cathodes. The slurry for the green tape was composed of nickel (Ni), cerium oxide doped with samarium oxide (SDC), water (solvent), and an organic binder (which becomes pore space after firing). Each of these elements is necessary for the effective transport of specific species: electrons, oxygen, ions, and gas particles, respectively. Moreover, the nickel foam was embedded into the powder-based structure to improve mechanical strength. The study involved many technological issues, such as the effect of the SDC fraction on the cathode microstructure, mechanical strength, and chemical stability at high temperatures, and also involved environmental issues.

18.
Adv Mater ; 34(23): e2108840, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35506196

RESUMO

2D MBenes, early transition metal borides, are a very recent derivative of ternary or quaternary transition metal boride (MAB) phases and represent a new member in the flatland. Although holding great potential toward various applications, mainly theoretical knowledge about their potential properties is available. Theoretical calculations and preliminary experimental attempts demonstrate their rich chemistry, excellent reactivity, mechanical strength/stability, electrical conductivity, transition properties, and energy harvesting possibility. Compared to MXenes, MBenes' structure appears to be more complex due to multiple crystallographic arrangements, polymorphism, and structural transformations. This makes their synthesis and subsequent delamination into single flakes challenging. Overcoming this bottleneck will enable a rational control over MBenes' material-structure-property relationship. Innovations in MBenes' postprocessing approaches will allow for the design of new functional systems and devices with multipurpose functionalities thus opening a promising paradigm for the conscious design of high-performance 2D materials.

19.
Materials (Basel) ; 15(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35161116

RESUMO

This article presents an attempt to determine the effect of the MXene phase addition and its decomposition during sintering with the use of the spark plasma sintering method on mechanical properties and residual stress of silicon carbide based composites. For this purpose, the unreinforced silicon carbide sinter and the silicon carbide composite with the addition of 2 wt.% of Ti3C2Tx were tested. The results showed a significant increase of fracture toughness and hardness for composite, respectively 36% and 13%. The numerical study involving this novel method of modelling shows the presence of a complex state of stress in the material, which is related to the anisotropic properties of graphitic carbon structures formed during sintering. An attempt to determine the actual values of residual stress in the tested materials using Raman spectroscopy was also made. These tests showed a good correlation with the constructed numerical model and confirmed the presence of a complex state of residual stress.

20.
Adv Drug Deliv Rev ; 182: 114099, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34990793

RESUMO

A broad family of two-dimensional (2D) materials - carbides, nitrides, and carbonitrides of early transition metals, called MXenes, became a newcomer in the flatland at the turn of 2010 and 2011 (over ten years ago). Their unique physicochemical properties made them attractive for many applications, highly boosting the development of various fields, including biotechnological. However, MXenes' functional features that impact their bioactivity and toxicity are still not fully well understood. This study discusses the essentials for MXenes's surface modifications toward their application in modern biotechnology and nanomedicine. We survey modification strategies in context of cytotoxicity, biocompatibility, and most prospective applications ready to implement in medical practice. We put the discussion on the material-structure-chemistry-property relationship into perspective and concentrate on overarching challenges regarding incorporating MXenes into nanostructured organic/inorganic bioactive architectures. It is another emerging group of materials that are interesting from the biomedical point of view as well. Finally, we present an influential outlook on the growing demand for future research in this field.


Assuntos
Nanopartículas/química , Elementos de Transição/química , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Sobrevivência Celular , Estabilidade de Medicamentos , Humanos , Nanopartículas/toxicidade , Fotoquimioterapia/métodos , Relação Estrutura-Atividade , Propriedades de Superfície , Condutividade Térmica , Elementos de Transição/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...