Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(12): 6854-6869, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35736210

RESUMO

Homologs of the mutagenic Escherichia coli DNA polymerase V (pol V) are encoded by numerous pathogens and mobile elements. We have used Rum pol (RumA'2B), from the integrative conjugative element (ICE), R391, as a model mobile element-encoded polymerase (MEPol). The highly mutagenic Rum pol is transferred horizontally into a variety of recipient cells, including many pathogens. Moving between species, it is unclear if Rum pol can function on its own or requires activation by host factors. Here, we show that Rum pol biochemical activity requires the formation of a physical mutasomal complex, Rum Mut, containing RumA'2B-RecA-ATP, with RecA being donated by each recipient bacteria. For R391, Rum Mut specific activities in vitro and mutagenesis rates in vivo depend on the phylogenetic distance of host-cell RecA from E. coli RecA. Rum pol is a highly conserved and effective mobile catalyst of rapid evolution, with the potential to generate a broad mutational landscape that could serve to ensure bacterial adaptation in antibiotic-rich environments leading to the establishment of antibiotic resistance.


Assuntos
Escherichia coli , Mutagênicos , Recombinases Rec A , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/metabolismo , Filogenia , Recombinases Rec A/metabolismo
2.
Cells ; 10(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062858

RESUMO

In the mid 1970s, Miroslav Radman and Evelyn Witkin proposed that Escherichia coli must encode a specialized error-prone DNA polymerase (pol) to account for the 100-fold increase in mutations accompanying induction of the SOS regulon. By the late 1980s, genetic studies showed that SOS mutagenesis required the presence of two "UV mutagenesis" genes, umuC and umuD, along with recA. Guided by the genetics, decades of biochemical studies have defined the predicted error-prone DNA polymerase as an activated complex of these three gene products, assembled as a mutasome, pol V Mut = UmuD'2C-RecA-ATP. Here, we explore the role of the ß-sliding processivity clamp on the efficiency of pol V Mut-catalyzed DNA synthesis on undamaged DNA and during translesion DNA synthesis (TLS). Primer elongation efficiencies and TLS were strongly enhanced in the presence of ß. The results suggest that ß may have two stabilizing roles: its canonical role in tethering the pol at a primer-3'-terminus, and a possible second role in inhibiting pol V Mut's ATPase to reduce the rate of mutasome-DNA dissociation. The identification of umuC, umuD, and recA homologs in numerous strains of pathogenic bacteria and plasmids will ensure the long and productive continuation of the genetic and biochemical journey initiated by Radman and Witkin.


Assuntos
Primers do DNA , DNA Polimerase Dirigida por DNA/genética , DNA/análise , DNA/genética , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Mutagênese , Mutação , Plasmídeos/metabolismo , Raios Ultravioleta
3.
PLoS Genet ; 15(2): e1007956, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716079

RESUMO

Mutagenic translesion DNA polymerase V (UmuD'2C) is induced as part of the DNA damage-induced SOS response in Escherichia coli, and is subjected to multiple levels of regulation. The UmuC subunit is sequestered on the cell membrane (spatial regulation) and enters the cytosol after forming a UmuD'2C complex, ~ 45 min post-SOS induction (temporal regulation). However, DNA binding and synthesis cannot occur until pol V interacts with a RecA nucleoprotein filament (RecA*) and ATP to form a mutasome complex, pol V Mut = UmuD'2C-RecA-ATP. The location of RecA relative to UmuC determines whether pol V Mut is catalytically on or off (conformational regulation). Here, we present three interrelated experiments to address the biochemical basis of conformational regulation. We first investigate dynamic deactivation during DNA synthesis and static deactivation in the absence of DNA synthesis. Single-molecule (sm) TIRF-FRET microscopy is then used to explore multiple aspects of pol V Mut dynamics. Binding of ATP/ATPγS triggers a conformational switch that reorients RecA relative to UmuC to activate pol V Mut. This process is required for polymerase-DNA binding and synthesis. Both dynamic and static deactivation processes are governed by temperature and time, in which on → off switching is "rapid" at 37°C (~ 1 to 1.5 h), "slow" at 30°C (~ 3 to 4 h) and does not require ATP hydrolysis. Pol V Mut retains RecA in activated and deactivated states, but binding to primer-template (p/t) DNA occurs only when activated. Studies are performed with two forms of the polymerase, pol V Mut-RecA wt, and the constitutively induced and hypermutagenic pol V Mut-RecA E38K/ΔC17. We discuss conformational regulation of pol V Mut, determined from biochemical analysis in vitro, in relation to the properties of pol V Mut in RecA wild-type and SOS constitutive genetic backgrounds in vivo.


Assuntos
DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Recombinases Rec A/metabolismo , Trifosfato de Adenosina/metabolismo , Dano ao DNA , DNA Bacteriano/biossíntese , DNA Polimerase Dirigida por DNA/genética , Ativação Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Genes Bacterianos , Cinética , Mutação , Conformação Proteica , Resposta SOS em Genética
4.
DNA Repair (Amst) ; 44: 42-50, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27236212

RESUMO

It is now close to 40 years since the isolation of non-mutable umu/uvm strains of Escherichia coli and the realization that damage induced mutagenesis in E.coli is not a passive process. Early models of mutagenesis envisioned the Umu proteins as accessory factors to the cell's replicase that not only reduced its normally high fidelity, but also allowed the enzyme to traverse otherwise replication-blocking lesions in the genome. However, these models underwent a radical revision approximately 15 years ago, with the discovery that the Umu proteins actually encode for a DNA polymerase, E.coli pol V. The polymerase lacks 3'→5' exonucleolytic proofreading activity and is inherently error-prone when replicating both undamaged and damage DNA. So as to limit any "gratuitous" mutagenesis, the activity of pol V is strictly regulated in the cell at multiple levels. This review will summarize our current understanding of the myriad levels of regulation imposed on pol V including transcriptional control, posttranslational modification, targeted proteolysis, activation of the catalytic activity of pol V through protein-protein interactions and the very recently described intracellular spatial regulation of pol V. Remarkably, despite the multiple levels at which pol V is regulated, the enzyme is nevertheless able to contribute to the genetic diversity and evolutionary fitness of E.coli.


Assuntos
DNA Bacteriano/genética , DNA Polimerase Dirigida por DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Resposta SOS em Genética , Dano ao DNA , Replicação do DNA , DNA Bacteriano/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Aptidão Genética , Variação Genética , Ligação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteólise
5.
Biochemistry ; 55(16): 2309-18, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27043933

RESUMO

1953, the year of Watson and Crick, bore witness to a less acclaimed yet highly influential discovery. Jean Weigle demonstrated that upon infection of Escherichia coli, λ phage deactivated by UV radiation, and thus unable to form progeny, could be reactivated by irradiation of the bacterial host. Evelyn Witkin and Miroslav Radman later revealed the presence of the SOS regulon. The more than 40 regulon genes are repressed by LexA protein and induced by the coproteolytic cleavage of LexA, catalyzed by RecA protein bound to single-stranded DNA, the RecA* nucleoprotein filament. Several SOS-induced proteins are engaged in repairing both cellular and extracellular damaged DNA. There's no "free lunch", however, because error-free repair is accompanied by error-prone translesion DNA synthesis (TLS), involving E. coli DNA polymerase V (UmuD'2C) and RecA*. This review describes the biochemical mechanisms of pol V-mediated TLS. pol V is active only as a mutasomal complex, pol V Mut = UmuD'2C-RecA-ATP. RecA* donates a single RecA subunit to pol V. We highlight three recent insights. (1) pol V Mut has an intrinsic DNA-dependent ATPase activity that governs polymerase binding and dissociation from DNA. (2) Active and inactive states of pol V Mut are determined at least in part by the distinct interactions between RecA and UmuC. (3) pol V is activated by RecA*, not at a blocked replisome, but at the inner cell membrane.


Assuntos
Bactérias/genética , Replicação do DNA , DNA Bacteriano/genética , DNA Polimerase Dirigida por DNA/genética , Mutação , Resposta SOS em Genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Bactérias/metabolismo , DNA Bacteriano/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutagênese , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Regulon , Ativação Transcricional
6.
Nat Commun ; 6: 10209, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26681117

RESUMO

Activation-induced deoxycytidine deaminase (AID) generates antibody diversity in B cells by initiating somatic hypermutation (SHM) and class-switch recombination (CSR) during transcription of immunoglobulin variable (IgV) and switch region (IgS) DNA. Using single-molecule FRET, we show that AID binds to transcribed dsDNA and translocates unidirectionally in concert with RNA polymerase (RNAP) on moving transcription bubbles, while increasing the fraction of stalled bubbles. AID scans randomly when constrained in an 8 nt model bubble. When unconstrained on single-stranded (ss) DNA, AID moves in random bidirectional short slides/hops over the entire molecule while remaining bound for ∼ 5 min. Our analysis distinguishes dynamic scanning from static ssDNA creasing. That AID alone can track along with RNAP during transcription and scan within stalled transcription bubbles suggests a mechanism by which AID can initiate SHM and CSR when properly regulated, yet when unregulated can access non-Ig genes and cause cancer.


Assuntos
Diversidade de Anticorpos/genética , Linfócitos B/metabolismo , Citidina Desaminase/metabolismo , DNA de Cadeia Simples/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , DNA/metabolismo , Proteínas Virais/metabolismo , Animais , Diversidade de Anticorpos/imunologia , Linfócitos B/imunologia , Citidina Desaminase/imunologia , Escherichia coli , Transferência Ressonante de Energia de Fluorescência , Switching de Imunoglobulina/genética , Switching de Imunoglobulina/imunologia , Células Sf9 , Hipermutação Somática de Imunoglobulina/genética , Hipermutação Somática de Imunoglobulina/imunologia , Spodoptera , Transcrição Gênica/genética , Transcrição Gênica/imunologia
7.
PLoS Genet ; 11(3): e1005066, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25811184

RESUMO

DNA polymerase V (pol V) of Escherichia coli is a translesion DNA polymerase responsible for most of the mutagenesis observed during the SOS response. Pol V is activated by transfer of a RecA subunit from the 3'-proximal end of a RecA nucleoprotein filament to form a functional complex called DNA polymerase V Mutasome (pol V Mut). We identify a RecA surface, defined by residues 112-117, that either directly interacts with or is in very close proximity to amino acid residues on two distinct surfaces of the UmuC subunit of pol V. One of these surfaces is uniquely prominent in the active pol V Mut. Several conformational states are populated in the inactive and active complexes of RecA with pol V. The RecA D112R and RecA D112R N113R double mutant proteins exhibit successively reduced capacity for pol V activation. The double mutant RecA is specifically defective in the ATP binding step of the activation pathway. Unlike the classic non-mutable RecA S117F (recA1730), the RecA D112R N113R variant exhibits no defect in filament formation on DNA and promotes all other RecA activities efficiently. An important pol V activation surface of RecA protein is thus centered in a region encompassing amino acid residues 112, 113, and 117, a surface exposed at the 3'-proximal end of a RecA filament. The same RecA surface is not utilized in the RecA activation of the homologous and highly mutagenic RumA'2B polymerase encoded by the integrating-conjugative element (ICE) R391, indicating a lack of structural conservation between the two systems. The RecA D112R N113R protein represents a new separation of function mutant, proficient in all RecA functions except SOS mutagenesis.


Assuntos
DNA Polimerase Dirigida por DNA/genética , Proteínas de Escherichia coli/genética , Recombinases Rec A/genética , Resposta SOS em Genética , Ativação Transcricional/genética , Trifosfato de Adenosina/genética , Sequência de Aminoácidos , Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Mutagênese/genética , Mutação , Nucleoproteínas/genética , Recombinases Rec A/metabolismo
8.
Elife ; 3: e02384, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24843026

RESUMO

Escherichia coli DNA polymerase V (pol V), a heterotrimeric complex composed of UmuD'2C, is marginally active. ATP and RecA play essential roles in the activation of pol V for DNA synthesis including translesion synthesis (TLS). We have established three features of the roles of ATP and RecA. (1) RecA-activated DNA polymerase V (pol V Mut), is a DNA-dependent ATPase; (2) bound ATP is required for DNA synthesis; (3) pol V Mut function is regulated by ATP, with ATP required to bind primer/template (p/t) DNA and ATP hydrolysis triggering dissociation from the DNA. Pol V Mut formed with an ATPase-deficient RecA E38K/K72R mutant hydrolyzes ATP rapidly, establishing the DNA-dependent ATPase as an intrinsic property of pol V Mut distinct from the ATP hydrolytic activity of RecA when bound to single-stranded (ss)DNA as a nucleoprotein filament (RecA*). No similar ATPase activity or autoregulatory mechanism has previously been found for a DNA polymerase.DOI: http://dx.doi.org/10.7554/eLife.02384.001.


Assuntos
Adenosina Trifosfatases/genética , DNA Polimerase Dirigida por DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Adenosina Trifosfatases/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrólise , Mutação , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Recombinases Rec A/genética , Recombinases Rec A/metabolismo
9.
Mol Microbiol ; 92(4): 659-80, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24628792

RESUMO

The role of replicative DNA polymerases in ensuring genome stability is intensively studied, but the role of other components of the replisome is still not fully understood. One of such component is the GINS complex (comprising the Psf1, Psf2, Psf3 and Sld5 subunits), which participates in both initiation and elongation of DNA replication. Until now, the understanding of the physiological role of GINS mostly originated from biochemical studies. In this article, we present genetic evidence for an essential role of GINS in the maintenance of replication fidelity in Saccharomyces cerevisiae. In our studies we employed the psf1-1 allele (Takayama et al., 2003) and a novel psf1-100 allele isolated in our laboratory. Analysis of the levels and specificity of mutations in the psf1 strains indicates that the destabilization of the GINS complex or its impaired interaction with DNA polymerase epsilon increases the level of spontaneous mutagenesis and the participation of the error-prone DNA polymerase zeta. Additionally, a synergistic mutator effect was found for the defects in Psf1p and in the proofreading activity of Pol epsilon, suggesting that proper functioning of GINS is crucial for facilitating error-free processing of terminal mismatches created by Pol epsilon.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Proteínas Cromossômicas não Histona/genética , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Complexos Multienzimáticos/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética
10.
Cell Mol Life Sci ; 70(17): 3089-108, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23178850

RESUMO

Activation-induced deoxycytidine deaminase (AID) and Apobec 3G (Apo3G) cause mutational diversity by initiating mutations on regions of single-stranded (ss) DNA. Expressed in B cells, AID deaminates C â†’ U in actively transcribed immunoglobulin (Ig) variable and switch regions to initiate the somatic hypermutation (SHM) and class switch recombination (CSR) that are essential for antibody diversity. Apo3G expressed in T cells catalyzes C deaminations on reverse transcribed cDNA causing HIV-1 retroviral inactivation. When operating properly, AID- and Apo3G-initiated mutations boost human fitness. Yet, both enzymes are potentially powerful somatic cell "mutators". Loss of regulated expression and proper genome targeting can cause human cancer. Here, we review well-established biological roles of AID and Apo3G. We provide a synopsis of AID partnering proteins during SHM and CSR, and describe how an Apo2 crystal structure provides "surrogate" insight for AID and Apo3G biochemical behavior. However, large gaps remain in our understanding of how dC deaminases search ssDNA to identify trinucleotide motifs to deaminate. We discuss two recent methods to analyze ssDNA scanning and deamination. Apo3G scanning and deamination is visualized in real-time using single-molecule FRET, and AID deamination efficiencies are determined with a random walk analysis. AID and Apo3G encounter many candidate deamination sites while scanning ssDNA. Generating mutational diversity is a principal aim of AID and an important ancillary property of Apo3G. Success seems likely to involve hit and miss deamination motif targeting, biased strongly toward miss.


Assuntos
Linfócitos B/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Variação Genética , Mutação , Desaminase APOBEC-3G , Diversidade de Anticorpos , Desaminação , Sistemas de Liberação de Medicamentos , Humanos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo
11.
Mutat Res ; 737(1-2): 34-42, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22709919

RESUMO

The Saccharomyces cerevisiae DNA polymerase epsilon holoenzyme (Pol ɛ HE) is composed of four subunits: Pol2p, Dpb2p, Dpb3p and Dpb4p. The biological functions of Pol2p, the catalytic subunit of Pol ɛ, are subject of active investigation, while the role of the other three, noncatalytic subunits, is not well defined. We showed previously that mutations in Dpb2p, a noncatalytic but essential subunit of Pol ɛ HE, influence the fidelity of DNA replication in yeast cells. The strength of the mutator phenotype due to the different dpb2 alleles was inversely proportional to the strength of protein-protein interactions between Pol2p and the mutated forms of Dpb2p. To understand better the mechanisms of the contribution of Dpb2p to the controlling of the level of spontaneous mutagenesis we undertook here a further genetic analysis of the mutator phenotype observed in dpb2 mutants. We demonstrate that the presence of mutated forms of Dpb2p in the cell not only influences the intrinsic fidelity of Pol ɛ but also facilitates more frequent participation of error-prone DNA polymerase zeta (Pol ζ) in DNA replication. The obtained results suggest that the structural integrity of Pol ɛ HE is a crucial contributor to accurate chromosomal DNA replication and, when compromised, favors participation of error prone DNA Pol ζ in this process.


Assuntos
DNA Polimerase II/química , Replicação do DNA , Mutagênese , Proteínas de Saccharomyces cerevisiae/fisiologia , DNA Polimerase II/fisiologia , DNA Fúngico/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Saccharomyces cerevisiae/genética
12.
J Biol Chem ; 287(19): 15826-35, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22362763

RESUMO

APOBEC3G (Apo3G) is a single-stranded (ss)DNA cytosine deaminase that eliminates HIV-1 infectivity by converting C → U in numerous small target motifs on the minus viral cDNA. Apo3G deaminates linear ssDNA in vitro with pronounced spatial asymmetry favoring the 3' → 5' direction. A similar polarity observed in vivo is believed responsible for initiating localized C → T mutational gradients that inactivate the virus. When compared with double-stranded (ds)DNA scanning enzymes, e.g. DNA glycosylases that excise rare aberrant bases, there is a paucity of mechanistic studies on ssDNA scanning enzymes. Here, we investigate ssDNA scanning and motif-targeting mechanisms for Apo3G using single molecule Förster resonance energy transfer. We address the specific issue of deamination asymmetry within the general context of ssDNA scanning mechanisms and show that Apo3G scanning trajectories, ssDNA contraction, and deamination efficiencies depend on motif sequence, location, and ionic strength. Notably, we observe the presence of bidirectional quasi-localized scanning of Apo3G occurring proximal to a 5' hot motif, a motif-dependent DNA contraction greatest for 5' hot > 3' hot > 5' cold motifs, and diminished mobility at low salt. We discuss the single molecule Förster resonance energy transfer data in terms of a model in which deamination polarity occurs as a consequence of Apo3G binding to ssDNA in two orientations, one that is catalytically favorable, with the other disfavorable.


Assuntos
Citidina Desaminase/metabolismo , DNA de Cadeia Simples/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Desaminase APOBEC-3G , Bacteriófago M13/genética , Sequência de Bases , Sítios de Ligação/genética , Biocatálise , Citidina Desaminase/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Desaminação , Corantes Fluorescentes/química , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
13.
Mol Microbiol ; 74(5): 1114-27, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19843230

RESUMO

We have investigated the possible role of Escherichia coli DNA polymerase (Pol) I in chromosomal replication fidelity. This was done by substituting the chromosomal polA gene by the polAexo variant containing an inactivated 3'-->5' exonuclease, which serves as a proofreader for this enzyme's misinsertion errors. Using this strain, activities of Pol I during DNA replication might be detectable as increases in the bacterial mutation rate. Using a series of defined lacZ reversion alleles in two orientations on the chromosome as markers for mutagenesis, 1.5- to 4-fold increases in mutant frequencies were observed. In general, these increases were largest for lac orientations favouring events during lagging strand DNA replication. Further analysis of these effects in strains affected in other E. coli DNA replication functions indicated that this polAexo mutator effect is best explained by an effect that is additive compared with other error-producing events at the replication fork. No evidence was found that Pol I participates in the polymerase switching between Pol II, III and IV at the fork. Instead, our data suggest that the additional errors produced by polAexo are created during the maturation of Okazaki fragments in the lagging strand.


Assuntos
DNA Polimerase I/metabolismo , Replicação do DNA , Escherichia coli/enzimologia , DNA , DNA Polimerase I/genética , Reparo do DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Exodesoxirribonucleases/metabolismo , Dados de Sequência Molecular
14.
Mutat Res ; 669(1-2): 27-35, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19463834

RESUMO

Most of the prokaryotic and eukaryotic replicative polymerases are multi-subunit complexes. There are several examples indicating that noncatalytic subunits of DNA polymerases may function as fidelity factors during replication process. In this work, we have further investigated the role of Dpb2p, a noncatalytic subunit of DNA polymerase epsilon holoenzyme from Saccharomyces cerevisiae in controlling the level of spontaneous mutagenesis. The data presented indicate that impaired interaction between catalytic Pol2p subunit and Dpb2p is responsible for the observed mutator phenotype in S. cerevisiae strains carrying different mutated alleles of the DPB2 gene. We observed a significant correlation between the decreased level of interaction between different mutated forms of Dpb2p towards a wild-type form of Pol2p and the strength of mutator phenotype that they confer. We propose that structural integrity of the Pol epsilon holoenzyme is essential for genetic stability in S. cerevisiae cells.


Assuntos
DNA Polimerase II/metabolismo , Mutação/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sobrevivência Celular , Deleção de Genes , Immunoblotting , Mutagênese , Fenótipo , Subunidades Proteicas , Saccharomyces cerevisiae/crescimento & desenvolvimento , Técnicas do Sistema de Duplo-Híbrido
15.
Genetics ; 178(2): 633-47, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18245343

RESUMO

Most replicases are multi-subunit complexes. DNA polymerase epsilon from Saccharomyces cerevisiae is composed of four subunits: Pol2p, Dpb2p, Dpb3p, and Dpb4p. Pol2p and Dpb2p are essential. To investigate a possible role for the Dpb2p subunit in maintaining the fidelity of DNA replication, we isolated temperature-sensitive mutants in the DPB2 gene. Several of the newly isolated dpb2 alleles are strong mutators, exhibiting mutation rates equivalent to pol2 mutants defective in the 3' --> 5' proofreading exonuclease (pol2-4) or to mutants defective in mismatch repair (msh6). The dpb2 pol2-4 and dpb2 msh6 double mutants show a synergistic increase in mutation rate, indicating that the mutations arising in the dpb2 mutants are due to DNA replication errors normally corrected by mismatch repair. The dpb2 mutations decrease the affinity of Dpb2p for the Pol2p subunit as measured by two-hybrid analysis, providing a possible mechanistic explanation for the loss of high-fidelity synthesis. Our results show that DNA polymerase subunits other than those housing the DNA polymerase and 3' --> 5' exonuclease are essential in controlling the level of spontaneous mutagenesis and genetic stability in yeast cells.


Assuntos
DNA Polimerase II/genética , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Substituição de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Polimerase II/metabolismo , Primers do DNA , Proteínas de Ligação a DNA/metabolismo , Genótipo , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Plasmídeos , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...