Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37836252

RESUMO

Bitter gourd (Momordica charantia L.) is an important vine crop of the Cucurbitaceae family and is well known for its high nutritional and medicinal values. However, the genetic variation remains largely unknown. Herein, 96 diverse bitter gourd genotypes were undertaken for diversity analysis using 10 quantitative traits, and 82 simple sequence repeat (SSR) markers. Out of 82 SSRs, 33 were polymorphic and the mean polymorphism information content (PIC) value was 0.38. Marker, JY-003 revealed a maximum (0.81) PIC value and, the number of alleles per locus ranged from 2 to 7 (average 3.46). The value of gene diversity showed the presence of a significant level of polymorphism among these genotypes. The unweighted pair group method (UPGMA) cluster analysis grouped the genotypes into two major clusters of which Cluster I comprised mostly small and medium-fruited genotypes of both M. charantia var. charantia and M. charantia var. muricata, whereas Cluster II included mostly long and extra-long fruited genotypes. Furthermore, these genotypes were divided into six distinct groups based on population structure analysis. The diversity analysis based on 10 quantitative traits revealed that earliness and high-yielding ability were exhibited by the predominantly gynoecious line DBGS-21-06 followed by DBGS-48-00. The principal component analysis (PCA) revealed that the first two components exhibited more than 50% of the total genetic variation. The present study deciphered a higher magnitude of agro-morphological and genetic diversity in 96 bitter gourd genotypes. Therefore, trait-specific genotypes identified in this study could be utilized in breeding programmes directed towards the development of improved cultivars and hybrids of bitter gourd.

2.
Planta ; 258(1): 15, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311932

RESUMO

MAIN CONCLUSION: The present review illustrates a comprehensive overview of the allele mining for genetic improvement in vegetable crops, and allele exploration methods and their utilization in various applications related to pre-breeding of economically important traits in vegetable crops. Vegetable crops have numerous wild descendants, ancestors and terrestrial races that could be exploited to develop high-yielding and climate-resilient varieties resistant/tolerant to biotic and abiotic stresses. To further boost the genetic potential of economic traits, the available genomic tools must be targeted and re-opened for exploitation of novel alleles from genetic stocks by the discovery of beneficial alleles from wild relatives and their introgression to cultivated types. This capability would be useful for giving plant breeders direct access to critical alleles that confer higher production, improve bioactive compounds, increase water and nutrient productivity as well as biotic and abiotic stress resilience. Allele mining is a new sophisticated technique for dissecting naturally occurring allelic variants in candidate genes that influence important traits which could be used for genetic improvement of vegetable crops. Target-induced local lesions in genomes (TILLINGs) is a sensitive mutation detection avenue in functional genomics, particularly wherein genome sequence information is limited or not available. Population exposure to chemical mutagens and the absence of selectivity lead to TILLING and EcoTILLING. EcoTILLING may lead to natural induction of SNPs and InDels. It is anticipated that as TILLING is used for vegetable crops improvement in the near future, indirect benefits will become apparent. Therefore, in this review we have highlighted the up-to-date information on allele mining for genetic enhancement in vegetable crops and methods of allele exploration and their use in pre-breeding for improvement of economic traits.


Assuntos
Melhoramento Vegetal , Verduras , Verduras/genética , Alelos , Produtos Agrícolas/genética , Clima
3.
Front Plant Sci ; 14: 1071648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938036

RESUMO

Bitter gourd is an important vegetable crop grown throughout the tropics mainly because of its high nutritional value. Sex expression and identification of gynoecious trait in cucurbitaceous vegetable crops has facilitated the hybrid breeding programme in a great way to improve productivity. In bitter gourd, gynoecious sex expression is poorly reported and detailed molecular pathways involve yet to be studied. The present experiment was conducted to study the inheritance, identify the genomic regions associated with gynoecious sex expression and to reveal possible candidate genes through QTL-seq. Segregation for the gynoecious and monoecious sex forms in the F2 progenies indicated single recessive gene controlling gynoecious sex expression in the genotype, PVGy-201. Gynoecious parent, PVGy-201, Monoecious parent, Pusa Do Mausami (PDM), and two contrasting bulks were constituted for deep-sequencing. A total of 10.56, 23.11, 15.07, and 19.38 Gb of clean reads from PVGy-201, PDM, gynoecious bulk and monoecious bulks were generated. Based on the ΔSNP index, 1.31 Mb regions on the chromosome 1 was identified to be associated with gynoecious sex expression in bitter gourd. In the QTL region 293,467 PVGy-201 unique variants, including SNPs and indels, were identified. In the identified QTL region, a total of 1019 homozygous variants were identified between PVGy1 and PDM genomes and 71 among them were non-synonymous variants (SNPS and INDELs), out of which 11 variants (7 INDELs, 4 SNPs) were classified as high impact variants with frame shift/stop gain effect. In total twelve genes associated with male and female gametophyte development were identified in the QTL-region. Ethylene-responsive transcription factor 12, Auxin response factor 6, Copper-transporting ATPase RAN1, CBL-interacting serine/threonine-protein kinase 23, ABC transporter C family member 2, DEAD-box ATP-dependent RNA helicase 1 isoform X2, Polygalacturonase QRT3-like isoform X2, Protein CHROMATIN REMODELING 4 were identified with possible role in gynoecious sex expression. Promoter region variation in 8 among the 12 genes indicated their role in determining gynoecious sex expression in bitter gourd genotype, DBGy-1. The findings in the study provides insight about sex expression in bitter gourd and will facilitate fine mapping and more precise identification of candidate genes through their functional validation.

4.
Front Plant Sci ; 14: 1258042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38333042

RESUMO

Introduction: Momordica balsamina is the closest wild species that can be crossed with an important fruit vegetable crop, Momordica charantia, has immense medicinal value, and placed under II subclass of primary gene pool of bitter gourd. M. balsamina is tolerant to major biotic and abiotic stresses. Genome characterization of Momordica balsamina as a wild relative of bitter gourd will contribute to the knowledge of the gene pool available for improvement in bitter gourd. There is potential to transfer gene/s related to biotic resistance and medicinal importance from M. balsamina to M. charantia to produce high-quality, better yielding and stress tolerant bitter gourd genotypes. Methods: The present study provides the first and high-quality chromosome-level genome assembly of M. balsamina with size 384.90 Mb and N50 30.96 Mb using sequence data from 10x Genomics, Nanopore, and Hi-C platforms. Results: A total of 6,32,098 transposons elements; 2,15,379 simple sequence repeats; 5,67,483 transcription factor binding sites; 3,376 noncoding RNA genes; and 41,652 protein-coding genes were identified, and 4,347 disease resistance, 67 heat stress-related, 05 carotenoid-related, 15 salt stress-related, 229 cucurbitacin-related, 19 terpenes-related, 37 antioxidant activity, and 06 sex determination-related genes were characterized. Conclusion: Genome sequencing of M. balsamina will facilitate interspecific introgression of desirable traits. This information is cataloged in the form of webgenomic resource available at http://webtom.cabgrid.res.in/mbger/. Our finding of comparative genome analysis will be useful to get insights into the patterns and processes associated with genome evolution and to uncover functional regions of cucurbit genomes.

5.
Sci Rep ; 12(1): 5146, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338233

RESUMO

Micronutrient malnutrition or hidden hunger remains a major global challenge for human health and wellness. The problem results from soil micro- and macro-nutrient deficiencies combined with imbalanced fertilizer use. Micronutrient-embedded NPK (MNENPK) complex fertilizers have been developed to overcome the macro- and micro-element deficiencies to enhance the yield and nutritive value of key crop products. We investigated the effect of foliar applications of an MNENPK fertilizer containing N, P, K, Fe, Zn and B in combination with traditional basal NPK fertilizers in terms of eggplant yield, fruit nutritive quality and on soil biological properties. Applying a multi-element foliar fertilizer improved the nutritional quality of eggplant fruit, with a significant increases in the concentration of Fe (+ 26%), Zn (+ 34%), K (+ 6%), Cu (+ 24%), and Mn (+ 27%), all of which are essential for human health. Increasing supply of essential micronutrients during the plant reproductive stages increased fruit yield, as a result of improved yield parameters. The positive effect of foliar fertilizing with MNENPK on soil biological parameters (soil microbial biomass carbon, dehydrogenase, alkaline phosphatase) also demonstrated its capacity to enhance soil fertility. This study suggests that foliar fertilizing with a multi-nutrient product such as MNENPK at eggplant flowering and fruiting stages, combined with the recommended-doses of NPK fertilizers is the optimal strategy to improve the nutritional quality of eggplant fruits and increase crop yields, both of which will contribute to reduce micronutrient malnutrition and hunger globally.


Assuntos
Desnutrição , Solanum melongena , Oligoelementos , Biofortificação , Suplementos Nutricionais , Fertilizantes/análise , Humanos , Micronutrientes/análise , Nutrientes , Solo
6.
Plants (Basel) ; 10(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34579393

RESUMO

The present investigation was carried out using 51 diverse bitter gourd accessions as material for studying genetic diversity and relatedness using morphological and SSR markers. A wide variation was observed for morphological traits like the number of days to the first female flower anthesis (37.33-60.67), the number of days to the first fruit harvest (47.67-72.00), the number of fruits/plant (12.00-46.67), fruit length (5.00-22.23 cm), fruit diameter (1.05-6.38 cm), average fruit weight (20.71-77.67 g) and yield per plant (513.3-1976 g). Cluster analysis for 10 quantitative traits grouped the 51 accessions into 6 clusters. Out of 61 SSR primers screened, 30 were polymorphic and highly informative as a means to differentiate these accessions. Based on genotyping, a high level of genetic diversity was observed, with a total of 99 alleles. The polymorphic information content (PIC) values ranged from 0.038 for marker BG_SSR-8 to 0.721 for S-24, with an average of 0.429. The numbers of alleles ranged from 2 to 5, with an average of 3.3 alleles per locus. Gene diversity ranged from 0.04 for BG_SSR-8 to 0.76 for S-24, showing a wide variation among 51 accessions. The UPGMA cluster analysis grouped these accessions into 3 major clusters. Cluster I comprised 4 small, fruited accessions that are commercially cultivated in central and eastern India. Cluster II comprised 35 medium- to long-sized fruited accessions, which made up an abundant and diverse group. Cluster III comprised 11 long and extra-long fruited accessions. The polymorphic SSR markers of the study will be highly useful in genetic fingerprinting and mapping, and for association analysis in Momordica regarding several economic traits.

7.
Virusdisease ; 32(1): 183-185, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33969161

RESUMO

Symptoms like bright yellowing, puckering of the leaf, vein banding, and vein thickening were observed on different cucurbit hosts at the experimental farm of Indian Agricultural Research Institute, New Delhi during Kharif 2019. Leaf-dip electron microscopy of the symptomatic leaves revealed the association of isometric virus particles measuring ~ 25 nm with bitter gourd and cucumber samples. The RT-PCR assay using polerovirus generic primers covering the partial RdRp, intergenic region, and partial CP region was resulted the amplicons of ~ 1.1 kb. Subsequent cloning, sequencing, and sequence analysis revealed the association of cucurbit aphid-borne yellows virus (CABYV) with bitter gourd (Momordica charantia) and cucumber (Cucumis sativus) plants. These results constitute the first report of CABYV infection on cucumber plants from India. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s13337-020-00645-4) contains supplementary material, which is available to authorized users.

8.
Front Plant Sci ; 9: 1555, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429861

RESUMO

A high-density, high-resolution genetic map was constructed for bitter gourd (Momordica charantia L.). A total of 2013 high quality SNP markers binned to 20 linkage groups (LG) spanning a cumulative distance of 2329.2 cM were developed. Each LG ranging from 185.2 cM (LG-12) to 46.2 cM (LG-17) and average LG span of 116.46 cM. The number of SNP markers mapped in each LG varied from 23 markers in LG-20 to 146 markers in LG-1 with an average of 100.65 SNPs per LG. The average distance between markers was 1.16 cM across 20 LGs and average distance between the markers ranged from 0.70 (LG-4) to 2.92 (LG-20). A total of 22 QTLs for four traits (gynoecy, sex ratio, node and days at first female flower appearance) were identified and mapped on 20 LGs. The gynoecious (gy-1) locus is flanked by markers TP_54865 and TP_54890 on LG 12 at a distance of 3.04 cM to TP_54890 and the major QTLs identified for the earliness traits will be extremely useful in marker development and MAS for rapid development of various gynoecious lines with different genetic background of best combiner for development of early and high yielding hybrids in bitter gourd.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...