Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(5): e15575, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153391

RESUMO

The presence of heavy metal, chromium (VI), in water environments leads to various diseases in humans, such as cancer, lung tumors, and allergies. This review comparatively examines the use of several adsorbents, such as biosorbents, activated carbon, nanocomposites, and polyaniline (PANI), in terms of the operational parameters (initial chromium (VI) concentration (Co), temperature (T), pH, contact time (t), and adsorbent dosage) to achieve the Langmuir's maximum adsorption capacity (qm) for chromium (VI) adsorption. The study finds that the use of biosorbents (fruit bio-composite, fungus, leave, and oak bark char), activated carbons (HCl-treated dry fruit waste, polyethyleneimine (PEI) and potassium hydroxide (KOH) PEI-KOH alkali-treated rice waste-derived biochar, and KOH/hydrochloric acid (HCl) acid/base-treated commercial), iron-based nanocomposites, magnetic manganese-multiwalled carbon nanotubes nanocomposites, copper-based nanocomposites, graphene oxide functionalized amino acid, and PANI functionalized transition metal are effective in achieving high Langmuir's maximum adsorption capacity (qm) for chromium (VI) adsorption, and that operational parameters such as initial concentration, temperature, pH, contact time, and adsorbent dosage significantly affect the Langmuir's maximum adsorption capacity (qm). Magnetic graphene oxide functionalized amino acid showed the highest experimental and pseudo-second-order kinetic model equilibrium adsorption capacities. The iron oxide functionalized calcium carbonate (IO@CaCO3) nanocomposites showed the highest heterogeneous adsorption capacity. Additionally, Syzygium cumini bark biosorbent is highly effective in treating tannery industrial wastewater with high levels of chromium (VI).

2.
Environ Res ; 222: 115279, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706895

RESUMO

Over the last few years, electroanalysis has made significant advancements, particularly in developing electrochemical sensors. Electrochemical sensors generally include emerging Photoelectrochemical and Electrochemiluminescence sensors, which combine optical techniques and traditional electrochemical bio/non-biosensors. Numerous EC-detecting methods have also been designed for commercial applications to detect biological and non-biological markers for various diseases. Analytical applications have recently focused significantly on one of the novel nanomaterials, the MXene. This material is being extensively investigated for applications in electrochemical sensors due to its unique mechanical, electronic, optical, active functional groups and thermal characteristics. This study extensively discusses the salient features of MXene-based electrochemical sensors, photoelectrochemical sensors, enzyme-based biosensors, immunosensors, aptasensors, electrochemiluminescence sensors, and electrochemical non-biosensors. In addition, their performance in detecting various substances and contaminants is thoroughly discussed. Furthermore, the challenges and prospects the MXene-based electrochemical sensors are elaborated.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Imunoensaio , Nanoestruturas/química
3.
Chemosphere ; 313: 137497, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36493892

RESUMO

Multiple ecological contaminants in gaseous, liquid, and solid forms are vented into ecosystems due to the huge growth of industrialization, which is today at the forefront of worldwide attention. High-efficiency removal of these environmental pollutants is a must because of the potential harm to public health and biodiversity. The alarming concern has led to the synthesis of improved nanomaterials for removing pollutants. A path to innovative methods for identifying and preventing several obnoxious, hazardous contaminants from entering the environment is grabbing attention. Various applications in diverse industries are seen as a potential directions for researchers. MXene is a new, excellent, and advanced material that has received greater importance related to the environmental application. Due to its unique physicochemical and mechanical properties, high specific surface area, physiological compatibility, strong electrodynamics, and raised specific surface area wettability, its applications are growing. This review paper examines the most recent methods and trends for environmental pollutant removal using advanced 2D Mxene materials. In addition, the history and the development of MXene synthesis were elaborated. Furthermore, an extreme summary of various environmental pollutants removal has been discussed, and the future challenges along with their future perspectives have been illustrated.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Ecossistema , Biodiversidade
4.
Chemosphere ; 311(Pt 2): 137056, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332734

RESUMO

Water consumption has grown in recent years due to rising urbanization and industry. As a result, global water stocks are steadily depleting. As a result, it is critical to seek strategies for removing harmful elements from wastewater once it has been cleaned. In recent years, many studies have been conducted to develop new materials and innovative pathways for water purification and environmental remediation. Due to low energy consumption, low operating cost, and integrated facilities, membrane separation has gained significant attention as a potential technique for water treatment. In these directions, MXene which is the advanced 2D material has been explored and many applications were reported. However, research on MXene-based membranes is still in its early stages and reported applications are scatter. This review provides a broad overview of MXenes and their perspectives, including their synthesis, surface chemistry, interlayer tuning, membrane construction, and uses for water purification. Application of MXene based membrane for extracting pollutants such as heavy metals, organic contaminants, and radionuclides from the aqueous water bodies were briefly discussed. Furthermore, the performance of MXene-based separation membranes is compared to that of other nano-based membranes, and outcomes are very promising. In order to shed more light on the advancement of MXene-based membranes and their operational separation applications, significant advances in the fabrication of MXene-based membranes is also encapsulated. Finally, future prospects of MXene-based materials for diverse applications were discussed.

5.
Environ Sci Pollut Res Int ; 28(39): 54477-54496, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34424475

RESUMO

Oil spills are a major contributor to water contamination, which sets off a significant impact on the environment, biodiversity, and economy. Efficient removal of oil spills is needed for the protection of marine species as well as the environment. Conventional approaches are not efficient enough for oil-water separation; therefore, effective strategies and efficient removal techniques (and materials) must be developed to restore the contaminated marine to its normal ecology. Several research studies have shown that nanotechnology provides efficient features to clean up these oil spills from the water using magnetic nanomaterials, particularly carbon/polymer-based magnetic nanocomposites. Surface modification of these nanomaterials via different techniques render them with salient innovative features. The present review discusses the advantages and limitations of conventional and advanced techniques for the oil spills removal from wastewater. Furthermore, the synthesis of magnetic nanocomposites, their utilization in oil-water separation, and adsorption mechanisms are discussed. Finally, the advancement and future perspectives of magnetic nanocomposites (particularly of carbon and polymer-based magnetic nanocomposites) in environmental remediation are presented.


Assuntos
Nanocompostos , Poluição por Petróleo , Carbono , Fenômenos Magnéticos , Polímeros
6.
Bioprocess Biosyst Eng ; 44(2): 417-427, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33034739

RESUMO

Combustion of coal create many harmful gases which effect on human health as well as on environment. The sulfur in coal limits its own use, and bio-desulfurization (BDS) shows enormous development potential and the prospects for the application of coal desulfurization. Present study highlights the bioprocess strategies for reduction of sulfur content from coal before combustion. The bioprocess involved the use of Airlift Bioreactor along with Rhodococcus sp. ATCC55309 as biocatalyst. Different nutritional and operational parameters involved to promote sulfur reduction at maximum level. The parameters were investigated are different carbon source, temperature, pH, Agitation speed, and pulp density. The impact of these parameters shows that sulfur removal can be enhanced though optimized conditions. The amount of total sulfur and organic sulfur present in coal were reduced by 33 ± 1.7% and 71 ± 1.5%, respectively, compared to untreated coal at controlled condition of various parameters are 20% (w/v) pulp density, 30 °C, 170 rpm, glucose as carbon source and pH 7. Whereas organic sulfur degrades from coal using Rhodococcus sp. ATCC55309 about 0.36 mM DBT (Di-benzothiophene) within 8 days via 4S-pathway. The maximum conversion of DBT compound into 2-HBP(2-hydroxybiphenyl) by utilizing 30 °C, 170 rpm, 20 pulp density and glucose as carbon source.


Assuntos
Biocatálise , Reatores Biológicos , Carvão Mineral , Rhodococcus/metabolismo , Enxofre/metabolismo
7.
Environ Sci Pollut Res Int ; 28(10): 12898-12908, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33095899

RESUMO

Indigenous hematite iron ore was chemically activated as a function of various hydrogen peroxide concentrations (0.5, 1, 1.5, and 2.0 M), activation time, and iron ore size. Adsorption potential was evaluated at various initial arsenic concentrations, contact time, adsorbent dose, and particle size. Maximum 95% removal efficiency was achieved at 600-µm size of iron ore, activated with 0.5 M concentration of hydrogen peroxide at 24 h of activation time. The experimental data were further evaluated through Langmuir and Freundlich isotherms. The maximum 14.46 mg/g of adsorption capacity was observed through Langmuir isotherm. Moreover, adsorption kinetics was evaluated using pseudo-first-order and pseudo-second-order kinetics, and the intra-particle diffusion model. The kinetics of arsenic adsorption was best described by using the pseudo-first-order kinetics with a kinetic rate of 0.621 min-1. The hematite iron ore before and after arsenic adsorption was characterized by XRD, SEM, and EDX.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arsênio/análise , Compostos Férricos , Concentração de Íons de Hidrogênio , Ferro , Cinética , Água , Poluentes Químicos da Água/análise
8.
Environ Sci Pollut Res Int ; 28(5): 5005-5019, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33241504

RESUMO

Petroleum, coal, and natural gas reservoir were depleting continuously due to an increase in industrialization, which enforced study to identify alternative sources. The next option is the renewable resources which are most important for energy purpose coupled with environmental problem reduction. Microbial fuel cells (MFCs) have become a promising approach to generate cleaner and more sustainable electrical energy. The involvement of various disciplines had been contributing to enhancing the performance of the MFCs. This review covers the performance of MFC along with different wastewater as a substrate in terms of treatment efficiencies as well as for energy generation. Apart from this, effect of various parameters and use of different nanomaterials for performance of MFC were also studied. From the current study, it proves that the use of microbial fuel cell along with the use of nanomaterials could be the waste and energy-related problem-solving approach. MFC could be better in performances based on optimized process parameters for handling any wastewater from industrial process.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Eletricidade , Eletrodos , Águas Residuárias
9.
Environ Sci Pollut Res Int ; 27(9): 9619-9636, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31925687

RESUMO

This work aims to utilize fly ash from a thermal power station for melanoidin reduction from distillery effluent by adsorption. To accomplish this, coal fly ash was modified through chemical treatment and was then tested for melanoidin adsorption as a function of various melanoidin concentrations, contact time, and pH. The specific novelty of this study is the evaluation of coal fly ash as a low-cost adsorbent for melanoidin removal. Furthermore, the simulation study was carried out using Aspen ADSIM software in order to optimize the commercial usage of the prepared adsorbent. The main results achieved include the maximum removal efficiency of 84% which was reached at initial melanoidin concentration of 1100 mg L-1 (5% dilution), pH 6, and a contact time of 120 min. The Langmuir and Freundlich isotherm models were used to evaluate adsorption isotherms. The maximum adsorption capacity of 281.34 mg/g was observed using the Langmuir isotherm. Furthermore, pseudo-first- and pseudo-second-order and intra-particle diffusion models were used to fit adsorption kinetic data. The pseudo-second-order was best describing the adsorption kinetic with a faster kinetic rate of 0.142 mg g-1 min-1. CFA (coal fly ash) after acidic activation resulted in a slightly higher surface area, average pore volume, and pore size. The maximum breakthrough time and adsorbent saturation time were achieved at initial melanoidin concentration of 1 mol/lit, bed height of 2.5 m, and flow rate of 50 lit/min.


Assuntos
Cinza de Carvão , Poluentes Químicos da Água , Adsorção , Carvão Mineral , Concentração de Íons de Hidrogênio , Cinética , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...