Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 384(6): 565-81, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21947251

RESUMO

Pharmacologic antagonism of cannabinoid 1 receptors (CB1 receptors) in the central nervous system (CNS) suppresses food intake, promotes weight loss, and improves the metabolic profile. Since the CB1 receptor is expressed both in the CNS and in peripheral tissues, therapeutic value may be gained with CB1 receptor inverse agonists acting on receptors in both domains. The present report examines the metabolic and CNS actions of a novel CB1 receptor inverse agonist, compound 64, a 1,5,6-trisubstituted pyrazolopyrimidinone. Compound 64 showed similar or superior binding affinity, in vitro potency, and pharmacokinetic profile compared to rimonabant. Both compounds improved the metabolic profile in diet-induced obese (DIO) rats and obese cynomolgus monkeys. Weight loss tended to be greater in compound 64-treated DIO rats compared to pair-fed counterparts, suggesting that compound 64 may have metabolic effects beyond those elicited by weight loss alone. In the CNS, reversal of agonist-induced hypothermia and hypolocomotion indicated that compound 64 possessed an antagonist activity in vivo. Dosed alone, compound 64 suppressed extinction of conditioned freezing (10 mg/kg) and rapid eye movement (REM) sleep (30 mg/kg), consistent with previous reports for rimonabant, although for REM sleep, compound 64 was greater than threefold less potent than for metabolic effects. Together, these data suggested that (1) impairment of extinction learning and REM sleep suppression are classic, centrally mediated responses to CB1 receptor inverse agonists, and (2) some separation may be achievable between central and peripheral effects with brain-penetrating CB1 receptor inverse agonists while maintaining metabolic efficacy. Furthermore, chronic treatment with compound 64 contributes to evidence that peripheral CB1 receptor blockade may yield beneficial outcomes that exceed those elicited by weight loss alone.


Assuntos
Obesidade/tratamento farmacológico , Piperidinas/farmacologia , Pirazóis/farmacologia , Pirimidinonas/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Agonismo Inverso de Drogas , Extinção Psicológica/efeitos dos fármacos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Obesidade/metabolismo , Piperidinas/farmacocinética , Pirazóis/administração & dosagem , Pirazóis/farmacocinética , Pirimidinonas/administração & dosagem , Pirimidinonas/farmacocinética , Ratos , Ratos Sprague-Dawley , Rimonabanto , Sono REM/efeitos dos fármacos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA