Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Oncol ; 40: 101871, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134841

RESUMO

Among multiple hemostasis components, platelets hyperactivity plays major roles in cancer progression by providing surface and internal components for intercellular crosstalk as well as by behaving like immune cells. Since platelets participate and regulate immunity in homeostatic and disease states, we assumed that revealing platelets profile might help in conceiving novel anti-cancer immune-based strategies. The goal of this review is to compile and discuss the most recent reports on the nature of cancer-associated platelets and their interference with immunotherapy. An increasing number of studies have emphasized active communication between cancer cells and platelets, with platelets promoting cancer cell survival, growth, and metastasis. The anti-cancer potential of platelet-directed therapy has been intensively investigated, and anti-platelet agents may prevent cancer progression and improve the survival of cancer patients. Platelets can (i) reduce antitumor activity; (ii) support immunoregulatory cells and factors generation; (iii) underpin metastasis and, (iv) interfere with immunotherapy by expressing ligands of immune checkpoint receptors. Mediators produced by tumor cell-induced platelet activation support vein thrombosis, constrain anti-tumor T- and natural killer cell response, while contributing to extravasation of tumor cells, metastatic potential, and neovascularization within the tumor. Recent studies showed that attenuation of immunothrombosis, modulation of platelets and their factors have a good perspective in immunotherapy optimization. Particularly, blockade of intra-tumoral platelet-associated programmed death-ligand 1 might promote anti-tumor T cell-induced cytotoxicity. Collectively, these findings suggest that platelets might represent the source of relevant cancer staging biomarkers, as well as promising targets and carriers in immunotherapeutic approaches for combating cancer.

2.
Biomolecules ; 13(10)2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37892119

RESUMO

Periodontitis (PD) is a degenerative, bacteria-induced chronic disease of periodontium causing bone resorption and teeth loss. It includes a strong reaction of immune cells through the secretion of proinflammatory factors such as Interleukin-17 (IL-17). PD treatment may consider systemic oral antibiotics application, including doxycycline (Dox), exhibiting antibacterial and anti-inflammatory properties along with supportive activity in wound healing, thus affecting alveolar bone metabolism. In the present study, we aimed to determine whether Dox can affect the regenerative potential of periodontal ligament mesenchymal stem cells (PDLSCs) modulated by IL-17 in terms of cell migration, osteogenic potential, bioenergetics and expression of extracellular matrix metalloproteinase 2 (MMP-2). Our findings indicate that Dox reduces the stimulatory effect of IL-17 on migration and MMP-2 expression in PDLSCs. Furthermore, Dox stimulates osteogenic differentiation of PDLSCs, annulling the inhibitory effect of IL-17 on PDLSCs osteogenesis. In addition, analyses of mitochondrial respiration reveal that Dox decreases oxygen consumption rate in PDLSCs exposed to IL-17, suggesting that changes in metabolic performance can be involved in Dox-mediated effects on PDLSCs. The pro-regenerative properties of Dox in inflammatory microenvironment candidates Dox in terms of regenerative therapy of PD-affected periodontium are observed.


Assuntos
Metaloproteinase 2 da Matriz , Periodontite , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Ligamento Periodontal , Interleucina-17/metabolismo , Osteogênese , Doxiciclina/farmacologia , Periodontite/tratamento farmacológico , Células-Tronco , Diferenciação Celular , Células Cultivadas
3.
Front Physiol ; 13: 844042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694408

RESUMO

Cancer-related anemia (CRA) is a common multifactorial disorder that adversely affects the quality of life and overall prognosis in patients with cancer. Safety concerns associated with the most common CRA treatment options, including intravenous iron therapy and erythropoietic-stimulating agents, have often resulted in no or suboptimal anemia management for many cancer patients. Chronic anemia creates a vital need to restore normal erythropoietic output and therefore activates the mechanisms of stress erythropoiesis (SE). A growing body of evidence demonstrates that bone morphogenetic protein 4 (BMP4) signaling, along with glucocorticoids, erythropoietin, stem cell factor, growth differentiation factor 15 (GDF15) and hypoxia-inducible factors, plays a pivotal role in SE. Nevertheless, a chronic state of SE may lead to ineffective erythropoiesis, characterized by the expansion of erythroid progenitor pool, that largely fails to differentiate and give rise to mature red blood cells, further aggravating CRA. In this review, we summarize the current state of knowledge on the emerging roles for stress erythroid progenitors and activated SE pathways in tumor progression, highlighting the urgent need to suppress ineffective erythropoiesis in cancer patients and develop an optimal treatment strategy as well as a personalized approach to CRA management.

4.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563306

RESUMO

The heterogeneity of stem cells represents the main challenge in regenerative medicine development. This issue is particularly pronounced when it comes to the use of primary mesenchymal stem/stromal cells (MSCs) due to a lack of identification markers. Considering the need for additional approaches in MSCs characterization, we applied Raman spectroscopy to investigate inter-individual differences between bone marrow MSCs (BM-MSCs). Based on standard biological tests, BM-MSCs of analyzed donors fulfill all conditions for their characterization, while no donor-related specifics were observed in terms of BM-MSCs morphology, phenotype, multilineage differentiation potential, colony-forming capacity, expression of pluripotency-associated markers or proliferative capacity. However, examination of BM-MSCs at a single-cell level by Raman spectroscopy revealed that despite similar biochemical background, fine differences in the Raman spectra of BM-MSCs of each donor can be detected. After extensive principal component analysis (PCA) of Raman spectra, our study revealed the possibility of this method to diversify BM-MSCs populations, whereby the grouping of cell populations was most prominent when cell populations were analyzed in pairs. These results indicate that Raman spectroscopy, as a label-free assay, could have a huge potential in understanding stem cell heterogeneity and sorting cell populations with a similar biochemical background that can be significant for the development of personalized therapy approaches.


Assuntos
Células da Medula Óssea , Células-Tronco Mesenquimais , Medula Óssea , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Análise Espectral Raman
5.
Biomolecules ; 12(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35204824

RESUMO

The biology of vitamin D3 is well defined, as are the effects of its active metabolites on various cells, including mesenchymal stromal/stem cells (MSCs). However, the biological potential of its precursor, cholecalciferol (VD3), has not been sufficiently investigated, although its significance in regenerative medicine-mainly in combination with various biomaterial matrices-has been recognized. Given that VD3 preconditioning might also contribute to the improvement of cellular regenerative potential, the aim of this study was to investigate its effects on bone marrow (BM) MSC functions and the signaling pathways involved. For that purpose, the influence of VD3 on BM-MSCs obtained from young human donors was determined via MTT test, flow cytometric analysis, immunocytochemistry, and qRT-PCR. Our results revealed that VD3, following a 5-day treatment, stimulated proliferation, expression of pluripotency markers (NANOG, SOX2, and Oct4), and osteogenic differentiation potential in BM-MSCs, while it reduced their senescence. Moreover, increased sirtuin 1 (SIRT1) expression was detected upon treatment with VD3, which mediated VD3-promoted osteogenesis and, partially, the stemness features through NANOG and SOX2 upregulation. In contrast, the effects of VD3 on proliferation, Oct4 expression, and senescence were SIRT1-independent. Altogether, these data indicate that VD3 has strong potential to modulate BM-MSCs' features, partially through SIRT1 signaling, although the precise mechanisms merit further investigation.


Assuntos
Células-Tronco Mesenquimais , Sirtuína 1 , Medula Óssea , Células da Medula Óssea , Diferenciação Celular , Proliferação de Células/fisiologia , Células Cultivadas , Colecalciferol/farmacologia , Humanos , Osteogênese , Sirtuína 1/genética , Sirtuína 1/metabolismo
6.
J Pers Med ; 11(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34834485

RESUMO

As an organism ages, many physiological processes change, including the immune system. This process, called immunosenescence, characterized by abnormal activation and imbalance of innate and adaptive immunity, leads to a state of chronic low-grade systemic inflammation, termed inflammaging. Aging and inflammaging are considered to be the root of many diseases of the elderly, as infections, autoimmune and chronic inflammatory diseases, degenerative diseases, and cancer. The role of mesenchymal stromal/stem cells (MSCs) in the inflammaging process and the age-related diseases is not completely established, although numerous features of aging MSCs, including altered immunomodulatory properties, impeded MSC niche supporting functions, and senescent MSC secretory repertoire are consistent with inflammaging development. Although senescence has its physiological function and can represent a mechanism of tumor prevention, in most cases it eventually transforms into a deleterious (para-)inflammatory process that promotes tumor growth. In this review we are going through current literature, trying to explore the role of senescent MSCs in making and/or sustaining a microenvironment permissive to tumor development and to analyze the therapeutic options that could target this process.

7.
J Cell Physiol ; 236(11): 7322-7341, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33934350

RESUMO

Mesenchymal stem cells (MSCs) have been identified within dental pulp tissues of exfoliated deciduous (SHEDs) and permanent (DPSCs) teeth. Although differences in their proliferative and differentiation properties were revealed, variability in SHEDs and DPSCs responsiveness to growth factors and cytokines have not been studied before. Here, we investigated the influence of interleukin-17 (IL-17) and basic fibroblast growth factor (bFGF) on stemness features of SHEDs and DPSCs by analyzing their proliferation, clonogenicity, cell cycle progression, pluripotency markers expression and differentiation after 7-day treatment. Results indicated that IL-17 and bFGF differently affected SHEDs and DPSCs proliferation and clonogenicity, since bFGF increased proliferative and clonogenic potential of both cell types, while IL-17 similarly affected SHEDs, exerting no effects on adult counterparts DPSCs. In addition, both factors stimulated NANOG, OCT4, and SOX2 pluripotency markers expression in SHEDs and DPSCs showing diverse intracellular expression patterns dependent on MSCs type. As for the differentiation capacity, both factors displayed comparable effects on SHEDs and DPSCs, including stimulatory effect of IL-17 on early osteogenesis in contrast to the strong inhibitory effect showed for bFGF, while having no impact on SHEDs and DPSCs chondrogenesis. Moreover, bFGF combined with IL-17 reduced CD90 and stimulated CD73 expression on both types of MSCs, whereas each factor induced IL-6 expression indicating its' role in IL-17/bFGF-modulated properties of SHEDs and DPSCs. All these data demonstrated that dental pulp MSCs from primary and permanent teeth exert intrinsic features, providing novel evidence on how IL-17 and bFGF affect stem cell properties important for regeneration of dental pulp at different ages.


Assuntos
Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Polpa Dentária/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Interleucina-17/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Esfoliação de Dente , Dente Decíduo/efeitos dos fármacos , Adulto , Células Cultivadas , Criança , Condrogênese/efeitos dos fármacos , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Fenótipo , Dente Decíduo/citologia , Dente Decíduo/metabolismo , Adulto Jovem
8.
World J Stem Cells ; 13(12): 1863-1880, 2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35069987

RESUMO

Current research data reveal microenvironment as a significant modifier of physical functions, pathologic changes, as well as the therapeutic effects of stem cells. When comparing regeneration potential of various stem cell types used for cytotherapy and tissue engineering, mesenchymal stem cells (MSCs) are currently the most attractive cell source for bone and tooth regeneration due to their differentiation and immunomodulatory potential and lack of ethical issues associated with their use. The microenvironment of donors and recipients selected in cytotherapy plays a crucial role in regenerative potential of transplanted MSCs, indicating interactions of cells with their microenvironment indispensable in MSC-mediated bone and dental regeneration. Since a variety of MSC populations have been procured from different parts of the tooth and tooth-supporting tissues, MSCs of dental origin and their achievements in capacity to reconstitute various dental tissues have gained attention of many research groups over the years. This review discusses recent advances in comparative analyses of dental MSC regeneration potential with regards to their tissue origin and specific microenvironmental conditions, giving additional insight into the current clinical application of these cells.

9.
Front Cell Dev Biol ; 8: 571648, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072753

RESUMO

Adipose tissue (AT) forms depots at different anatomical locations throughout the body, being in subcutaneous and visceral regions, as well as the bone marrow. These ATs differ in the adipocyte functional profile, their insulin sensitivity, adipokines' production, lipolysis, and response to pathologic conditions. Despite the recent advances in lineage tracing, which have demonstrated that individual adipose depots are composed of adipocytes derived from distinct progenitor populations, the cellular and molecular dissection of the adipose clonogenic stem cell niche is still a great challenge. Additional complexity in AT regulation is associated with tumor-induced changes that affect adipocyte phenotype. As an integrative unit of cell differentiation, AT microenvironment regulates various phenotype outcomes of differentiating adipogenic lineages, which consequently may contribute to the neoplastic phenotype manifestations. Particularly interesting is the capacity of AT to impose and support the aberrant potency of stem cells that accompanies tumor development. In this review, we summarize the current findings on the communication between adipocytes and their progenitors with tumor cells, pointing out to the co-existence of healthy and neoplastic stem cell niches developed during tumor evolution. We also discuss tumor-induced adaptations in mature adipocytes and the involvement of alternative differentiation programs.

10.
World J Stem Cells ; 12(9): 922-937, 2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-33033555

RESUMO

Mesenchymal stromal/stem cells (MSCs) are adult stem cells of stromal origin that possess self-renewal capacity and the ability to differentiate into multiple mesodermal cell lineages. They play a critical role in tissue homeostasis and wound healing, as well as in regulating the inflammatory microenvironment through interactions with immune cells. Hence, MSCs have garnered great attention as promising candidates for tissue regeneration and cell therapy. Because the inflammatory niche plays a key role in triggering the reparative and immunomodulatory functions of MSCs, priming of MSCs with bioactive molecules has been proposed as a way to foster the therapeutic potential of these cells. In this paper, we review how soluble mediators of the inflammatory niche (cytokines and alarmins) influence the regenerative and immunomodulatory capacity of MSCs, highlighting the major advantages and concerns regarding the therapeutic potential of these inflammatory primed MSCs. The data summarized in this review may provide a significant starting point for future research on priming MSCs and establishing standardized methods for the application of preconditioned MSCs in cell therapy.

11.
Stem Cell Rev Rep ; 16(5): 853-875, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32681232

RESUMO

Mesenchymal stem cells (MSC) have been considered the promising candidates for the regenerative and personalized medicine due to their self-renewal potential, multilineage differentiation and immunomodulatory capacity. Although these properties have encouraged profound MSC studies in recent years, the majority of research has been based on standard 2D culture utilization. The opportunity to resemble in vivo characteristics of cells native niche has been provided by implementation of 3D culturing models such as MSC spheroid formation assesed through cells self-assembling. In this review, we address the current literature on physical and biochemical features of 3D MSC spheroid microenvironment and their impact on MSC properties and behaviors. Starting with the reduction in the cells' dimensions and volume due to the changes in adhesion molecules expression and cytoskeletal proteins rearrangement resembling native conditions, through the microenvironment shifts in oxygen, nutrients and metabolites gradients and demands, we focus on distinctive and beneficial features of MSC in spheroids compared to cells cultured in 2D conditions. By summarizing the data for 3D MSC spheroids regarding cell survival, pluripotency, differentiation, immunomodulatory activities and potential to affect tumor cells growth we highlighted advantages and perspectives of MSC spheroids use in regenerative medicine. Further detailed analyses are needed to deepen our understanding of mechanisms responsible for modified MSC behavior in spheroids and to set future directions for MSC clinical application.


Assuntos
Microambiente Celular , Células-Tronco Mesenquimais/citologia , Esferoides Celulares/citologia , Animais , Diferenciação Celular , Sobrevivência Celular , Epigênese Genética , Humanos , Células-Tronco Mesenquimais/metabolismo
12.
Placenta ; 82: 25-34, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174623

RESUMO

INTRODUCTION: Mesenchymal stem cells from Wharton's Jelly of a human umbilical cord (WJ-MSCs) are a potential tool in regenerative medicine based on their availability, proliferative potential and differentiation capacity. Since their physiological niche contains low oxygen levels, we investigated whether cultivation of WJ-MSCs at 3% O2 affects their main features. METHODS: WJ-MSCs were cultured under 21% and 3% O2. Proliferation rate was followed by short and long term proliferation assays, clonogenic capacity by CFU-F assay and cell cycle and death by flow cytometry. Differentiation capacity was investigated by histochemical staining after induced differentiation. Pluripotency and differentiation markers' expression was determined by RT-PCR. Migration capacity was followed by scratch assay and mobilization from collagen, and the activity of proteolytic enzymes by zymography. Specific inhibitors of MAPK and Wnt/ß-catenin pathways were used to investigate underlying molecular mechanisms. RESULTS: Compared to standard 21% O2, cultivation of WJ-MSCs at 3% O2 did not influence their immunophenotype, while it modulated their differentiation process and enhanced their clonogenic and expansion capacity. 3% O2 induced transient change in cell cycle and prevented cell death. The expression of NANOG, OCT4A, OCT4B and SOX2 was increased at 3% O2. Both cultivation and preculturing of WJ-MSCs at 3% O2 increased their in vitro migratory capacity and enhanced the activity of proteolytic enzymes. ERK1/2 mediated WJ-MSCs' mobilization from collagen regardless of oxygen levels, while Wnt/ß-catenin pathway was activated during migration and mobilization at standard conditions. CONCLUSION: Culturing of WJ-MSCs under 3% O2 should be considered a credible condition when investigating their properties and potential use.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Nicho de Células-Tronco/fisiologia , Cordão Umbilical/citologia , Geleia de Wharton/citologia , Hipóxia Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Feminino , Humanos , Oxigênio/metabolismo , Gravidez
13.
Cell Prolif ; 52(1): e12533, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30430681

RESUMO

OBJECTIVES: Soluble IL-33 (interleukin (IL)-1-like cytokine) acts as endogenous alarm signal (alarmin). Since alarmins, besides activating immune system, act to restore tissue homeostasis, we investigated whether IL-33 exerts beneficial effects on oral stem cell pull. MATERIALS AND METHODS: Clonogenicity, proliferation, differentiation and senescence of stem cells derived from human periodontal ligament (PDLSCs) and dental pulp (DPSCs) were determined after in vitro exposure to IL-33. Cellular changes were detected by flow cytometry, Western blot, immunocytochemistry and semiquantitative RT-PCR. RESULTS: IL-33 stimulated proliferation, clonogenicity and expression of pluripotency markers, OCT-4, SOX-2 and NANOG, but it inhibited ALP activity and mineralization in both PDLSCs and DPSCs. Higher Ki67 expression and reduced ß-galactosidase activity in IL-33-treated cells were demonstrated, whereas these trends were more conspicuous in osteogenic medium. However, after 7-day IL-33 pretreatment, differentiation capacity of IL-33-pretreated cells was retained, and increased ALP activity was observed in both cell types. Results showed that IL-33 regulates NF-κB and ß-catenin signalling, indicating the association of these molecules with changes observed in IL-33-treated PDLSCs and DPSCs, particularly their proliferation, pluripotency-associated marker expression and osteogenesis. CONCLUSIONS: IL-33 treatment impairs osteogenesis of PDLSCs and DPSCs, while increases their clonogenicity, proliferation and pluripotency marker expression. After exposure to IL-33, osteogenic capacity of cells stayed intact. NF-κB and ß-catenin are implicated in the effects achieved by IL-33 in PDLSCs and DPSCs.


Assuntos
Polpa Dentária/citologia , Interleucina-33/metabolismo , Osteogênese/fisiologia , Ligamento Periodontal/citologia , Células-Tronco Pluripotentes/citologia , Alarminas/metabolismo , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , NF-kappa B/metabolismo , Proteína Homeobox Nanog/biossíntese , Fator 3 de Transcrição de Octâmero/biossíntese , Fatores de Transcrição SOXB1/biossíntese , Transdução de Sinais/fisiologia , Calcificação de Dente/fisiologia , beta Catenina/metabolismo
14.
Artif Cells Nanomed Biotechnol ; 46(sup3): S370-S382, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30198336

RESUMO

Adipose tissue (AT) homeostasis and expansion are dependent on complex crosstalk between resident adipose stromal/stem cells (ASCs) and AT extracellular matrix (ECM). Although adipose tissue ECM (atECM) is one of the key players in the stem cell niche, data on bidirectional interaction of ASCs and atECM are still scarce. Here, we investigated how atECM guides ASCs' differentiation. atECM altered shape and cytoskeleton organization of ASCs without changing their proliferation, ß-galactosidase activity and adhesion. Cytoskeleton modifications occurred due to fostered parallel organization of F-actin and elevated expression of Vimentin in ASCs. After seven-day cultivation, atECM impaired osteogenesis of ASCs, simultaneously decreasing expression of Runx2. In addition, atECM accelerated early adipogenesis concomitantly with altered Vimentin organization in ASCs, slightly increasing PPARγ, while elevated Adiponectin and Vimentin mRNA expression. Early adipogenesis triggered by atECM was followed by upregulated mitochondrial activity and Sirtuin 1 (SIRT1) expression in ASCs. Proadipogenic events induced by atECM were mediated by SIRT1, indicating the supportive role of atECM in adipogenesis-related metabolic state of ASCs. These results provide a closer look at the effects of atECM on ASC physiology and may support the advancement of engineering design in soft tissue reconstruction and fundamental research of AT.


Assuntos
Adipogenia , Tecido Adiposo/metabolismo , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Sirtuína 1/metabolismo , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Adulto , Antígenos de Diferenciação/metabolismo , Feminino , Humanos , Masculino , Osteogênese , Células-Tronco/citologia , Células Estromais/citologia , Células Estromais/metabolismo
15.
J Cell Physiol ; 233(1): 447-462, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28295277

RESUMO

Lipopolysaccharide (LPS) is a pertinent deleterious factor in oral microenvironment for cells which are carriers of regenerative processes. The aim of this study was to investigate the emerging in vitro effects of LPS (Escherichia coli) on human periodontal ligament stem cell (PDLSC) functions and associated signaling pathways. We demonstrated that LPS did not affect immunophenotype, proliferation, viability, and cell cycle of PDLSCs. However, LPS modified lineage commitment of PDLSCs inhibiting osteogenesis by downregulating Runx2, ALP, and Ocn mRNA expression, while stimulating chondrogenesis and adipogenesis by upregulating Sox9 and PPARγ mRNA expression. LPS promoted myofibroblast-like phenotype of PDLSCs, since it significantly enhanced PDLSC contractility, as well as protein and/or gene expression of TGF-ß, fibronectin (FN), α-SMA, and NG2. LPS also increased protein and gene expression levels of anti-inflammatory COX-2 and pro-inflammatory IL-6 molecules in PDLSCs. Inhibition of peripheral blood mononuclear cells (MNCs) transendothelial migration in presence of LPS-treated PDLSCs was accompanied by the reduction of CD29 expression within MNCs. However, LPS treatment did not change the inhibitory effect of PDLSCs on mitogen-stimulated proliferation of CD4+ and the ratio of CD4+ CD25high /CD4+ CD25low lymphocytes. LPS-treated PDLSCs did not change the frequency of CD34+ and CD45+ cells, but decreased the frequency of CD33+ and CD14+ myeloid cells within MNCs. Moreover, LPS treatment attenuated the stimulatory effect of PDLSCs on CFC activity of MNCs, predominantly the CFU-GM number. The results indicated that LPS-activated ERK1,2 was at least partly involved in the observed effects on PDLSC differentiation capacity, acquisition of myofibroblastic attributes, and changes of their immunomodulatory features.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miofibroblastos/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Microambiente Celular , Condrogênese/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Miofibroblastos/enzimologia , Miofibroblastos/imunologia , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogênese/efeitos dos fármacos , PPAR gama/genética , PPAR gama/metabolismo , Ligamento Periodontal/enzimologia , Ligamento Periodontal/imunologia , Fenótipo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/enzimologia , Células-Tronco/imunologia , Fatores de Tempo , Migração Transendotelial e Transepitelial/efeitos dos fármacos
16.
Dev Dyn ; 247(3): 359-367, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28850772

RESUMO

Due to coexistence of stromal and epithelial tumor cells, their dynamic interactions have been widely recognized as significant cellular components to the tumor tissue integrity. Initiation and outcome of epithelial to mesenchymal transition (EMT) in tumor cells are dependent on their interaction with adjacent or recruited mesenchymal stromal cells (MSCs). A plethora of mechanisms are involved in MSCs-controlled employment of the developmental processes of EMT that contribute to loss of epithelial cell phenotype and acquisition of stemness, invasiveness and chemoresistance of tumor cells. Interplay of MSCs with tumor cells, including interchange of soluble biomolecules, plasma membrane structures, cytoplasmic content, and organelles, is established through cell-cell contact and/or by means of paracrine signaling. The main focus of this review is to summarize knowledge about involvement of MSCs in cancer cell EMT. Understanding the underlying cellular and molecular mechanism involved in the interplay between MSCs and cancer EMT is essential for development of effective therapy approaches, which in combination with current treatments may improve the control of tumor progression. Developmental Dynamics 247:359-367, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Transição Epitelial-Mesenquimal , Células-Tronco Mesenquimais/patologia , Neoplasias/patologia , Animais
17.
Front Immunol ; 8: 939, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28848547

RESUMO

In addition to providing essential molecules for the overall function of cells, metabolism plays an important role in cell fate and can be affected by microenvironmental stimuli as well as cellular interactions. As a specific niche, tumor microenvironment (TME), consisting of different cell types including stromal/stem cells and immune cells, is characterized by distinct metabolic properties. This review will be focused on the metabolic plasticity of mesenchymal stromal/stem cells (MSC) and macrophages in TME, as well as on how the metabolic state of cancer stem cells (CSC), as key drivers of oncogenesis, affects their generation and persistence. Namely, heterogenic metabolic phenotypes of these cell populations, which include various levels of dependence on glycolysis or oxidative phosphorylation are closely linked to their complex roles in cancer progression. Besides well-known extrinsic factors, such as cytokines and growth factors, the differentiation and activation states of CSC, MSC, and macrophages are coordinated by metabolic reprogramming in TME. The significance of mutual metabolic interaction between tumor stroma and cancer cells in the immune evasion and persistence of CSC is currently under investigation.

18.
Mediators Inflamm ; 2016: 7314016, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27630452

RESUMO

State of tumor microenvironment (TME) is closely linked to regulation of tumor growth and progression affecting the final outcome, refractoriness, and relapse of disease. Interactions of tumor, immune, and mesenchymal stromal/stem cells (MSCs) have been recognized as crucial for understanding tumorigenesis. Due to their outstanding features, stem cell-like properties, capacity to regulate immune response, and dynamic functional phenotype dependent on microenvironmental stimuli, MSCs have been perceived as important players in TME. Signals provided by tumor-associated chronic inflammation educate MSCs to alter their phenotype and immunomodulatory potential in favor of tumor-biased state of MSCs. Adjustment of phenotype to TME and acquisition of tumor-promoting ability by MSCs help tumor cells in maintenance of permissive TME and suppression of antitumor immune response. Potential utilization of MSCs in treatment of tumor is based on their inherent ability to home tumor tissue that makes them suitable delivery vehicles for immune-stimulating factors and vectors for targeted antitumor therapy. Here, we review data regarding intrusive effects of inflammatory TME on MSCs capacity to affect tumor development through modification of their phenotype and interactions with immune system.


Assuntos
Células-Tronco Mesenquimais/patologia , Neoplasias/patologia , Animais , Carcinogênese/imunologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Humanos , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Microambiente Tumoral/fisiologia
19.
IUBMB Life ; 68(3): 190-200, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26805406

RESUMO

Mesenchymal stem cells from human adipose tissue (hASCs) are proposed as suitable tools for soft tissue engineering and reconstruction. Although it is known that hASCs have the ability to home to sites of inflammation and tumor niche, the role of inflammatory cytokines in the hASCs-affected tumor development is not understood. We found that interferon-γ (IFN-γ) and/or tumor necrosis factor-α (TNF-α) prime hASCs to produce soluble factors which enhance MCF-7 cell line malignancy in vitro. IFN-γ and/or TNF-α-primed hASCs produced conditioned media (CM) which induced epithelial to mesenchymal transition (EMT) of MCF-7 cells by reducing E-Cadherin and increasing Vimentin expression. Induced EMT was accompanied by increased invasion, migration, and urokinase type-plasminogen activator (uPA) expression in MCF-7 cells. These effects were mediated by increased expression of transforming growth factor-ß1(TGF-ß1) in cytokines-primed hASCs, since inhibition of type I TGF-ß1 receptor on MCF-7 cells and neutralization of TGF-ß1 disabled the CM from primed hASCs to increase EMT, cell migration, and uPA expression in MCF-7 cells. Obtained data suggested that IFN-γ and/or TNF-α primed hASCs might enhance the malignancy of MCF-7 cell line by inducing EMT, cell motility and uPA expression in these cells via TGF-ß1-Smad3 signalization, with potentially important implications in breast cancer progression.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Fator de Crescimento Transformador beta1/fisiologia , Tecido Adiposo/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Transição Epitelial-Mesenquimal , Feminino , Humanos , Interferon gama/fisiologia , Células MCF-7 , Invasividade Neoplásica , Transdução de Sinais , Fator de Necrose Tumoral alfa/fisiologia , Ativador de Plasminogênio Tipo Uroquinase/fisiologia
20.
Int J Biochem Cell Biol ; 71: 92-101, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26718973

RESUMO

Periodontal disease (PD), a degenerative bacterially induced disease of periodontium, can lead to bone resorption and teeth loss. Development of PD includes a strong inflammatory reaction, which involves multiple immune cells and their secreting factors including interleukin-17 (IL-17), which is not only an important modulator of immune and hematopoietic responses but also affects bone metabolism. In the present study we aimed to determine whether IL-17 affects the regenerative potential of periodontal ligament mesenchymal stem cells (PDLSCs) by investigating its ability to modulate osteogenic differentiation of these cells in vitro along with associated signaling pathways. Our results revealed that IL-17 inhibited both the proliferation and migration of PDLSCs and decreased their osteogenic differentiation by activating ERK1,2 and JNK mitogen-activated protein kinases. Obtained data suggested that IL-17 might contribute to alveolar bone loss in PD.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Interleucina-17/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/citologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Adulto , Linhagem da Célula/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...