Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
iScience ; 27(3): 109224, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439954

RESUMO

Molecular mechanisms underlying quantitative variations of pathogenicity remain elusive. Here, we identified the Xanthomonas campestris XopJ6 effector that triggers disease resistance in cauliflower and Arabidopsis thaliana. XopJ6 is a close homolog of the Ralstoniapseudosolanacearum PopP2 YopJ family acetyltransferase. XopJ6 is recognized by the RRS1-R/RPS4 NLR pair that integrates a WRKY decoy domain mimicking effector targets. We identified a XopJ6 natural variant carrying a single residue substitution in XopJ6 WRKY-binding site that disrupts interaction with WRKY proteins. This mutation allows XopJ6 to evade immune perception while retaining some XopJ6 virulence functions. Interestingly, xopJ6 resides in a Tn3-family transposon likely contributing to xopJ6 copy number variation (CNV). Using synthetic biology, we demonstrate that xopJ6 CNV tunes pathogen virulence on Arabidopsis through gene dosage-mediated modulation of xopJ6 expression. Together, our findings highlight how sequence and structural genetic variations restricted at a particular effector gene contribute to bacterial host adaptation.

3.
Cell Rep ; 38(6): 110339, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139385

RESUMO

MicroRNAs (miRNAs) are transcribed as long primary transcripts (pri-miRNAs) by RNA polymerase II. Plant pri-miRNAs encode regulatory peptides called miPEPs, which specifically enhance the transcription of the pri-miRNA from which they originate. However, paradoxically, whereas miPEPs have been identified in different plant species, they are poorly conserved, raising the question of the mechanisms underlying their specificity. To address this point, we identify and re-annotate multiple Arabidopsis thaliana pri-miRNAs in order to identify ORF encoding miPEPs. The study of several identified miPEPs in different species show that non-conserved miPEPs are only active in their plant of origin, whereas conserved ones are active in different species. Finally, we find that miPEP activity relies on the presence of its own miORF, explaining both the lack of selection pressure on miPEP sequence and the ability for non-conserved peptides to play a similar role, i.e., to activate the expression of their corresponding miRNA.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/metabolismo , Peptídeos/metabolismo , Fases de Leitura Aberta/genética , Plantas/genética
4.
New Phytol ; 233(5): 2232-2248, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34913494

RESUMO

Oomycete plant pathogens secrete effector proteins to promote disease. The damaging soilborne legume pathogen Aphanomyces euteiches harbors a specific repertoire of Small Secreted Protein effectors (AeSSPs), but their biological functions remain unknown. Here we characterize AeSSP1256. The function of AeSSP1256 is investigated by physiological and molecular characterization of Medicago truncatula roots expressing the effector. A potential protein target of AeSSP1256 is identified by yeast-two hybrid, co-immunoprecipitation, and fluorescent resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM) assays, as well as promoter studies and mutant characterization. AeSSP1256 impairs M. truncatula root development and promotes pathogen infection. The effector is localized to the nucleoli rim, triggers nucleoli enlargement and downregulates expression of M. truncatula ribosome-related genes. AeSSP1256 interacts with a functional nucleocytoplasmic plant RNA helicase (MtRH10). AeSSP1256 relocates MtRH10 to the perinucleolar space and hinders its binding to plant RNA. MtRH10 is associated with ribosome-related genes, root development and defense. This work reveals that an oomycete effector targets a plant RNA helicase, possibly to trigger nucleolar stress and thereby promote pathogen infection.


Assuntos
Aphanomyces , Medicago truncatula , Aphanomyces/fisiologia , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , RNA Helicases/genética , RNA de Plantas/metabolismo
5.
AoB Plants ; 13(4): plab041, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34316339

RESUMO

The ability of phenolic compounds to autofluoresce upon illumination by UV or blue light was exploited to explore the nature and distribution of these metabolites within the flower petals, leaves and roots of the violet, Viola alba subsp. dehnhardtii. This was achieved through a dual complementary approach that combined fluorescence microscopy imaging of living intact tissues and chemical extraction of pulverized material. The blue to red fluorescence displayed by living tissues upon illumination was indicative of their richness in phenolic compounds. Phenolic acids were found in all tissues, while flavonoids characterized the aerial part of the plant, anthocyanidins being restricted to the petals. The chemical quantification of phenolics in plant extracts confirmed their tissue-specific distribution and abundance. A key finding was that the spectral signatures obtained through confocal microscopy of endogenous fluorophores in living tissues and their counterpart extracts share the same fluorescence patterns, pointing out the potential of fluorescence imaging of intact organs for a proper estimation of their phenolic content. In addition, this study highlighted a few distinct morphology cell types, in particular foliar-glandular-like structures, and jagged petal cell walls. Altogether, these data provide a comprehensive histochemical localization of phenolics in living tissues of a violet. Converting fluorescence imaging into a chemical imprint indicated that one can rely on fluorescence microscopy of intact living tissues as a rapid, non-destructive means to follow their phenolic imprint under various environmental conditions.

6.
Sci Adv ; 6(46)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33188025

RESUMO

Vascular plant pathogens travel long distances through host veins, leading to life-threatening, systemic infections. In contrast, nonvascular pathogens remain restricted to infection sites, triggering localized symptom development. The contrasting features of vascular and nonvascular diseases suggest distinct etiologies, but the basis for each remains unclear. Here, we show that the hydrolase CbsA acts as a phenotypic switch between vascular and nonvascular plant pathogenesis. cbsA was enriched in genomes of vascular phytopathogenic bacteria in the family Xanthomonadaceae and absent in most nonvascular species. CbsA expression allowed nonvascular Xanthomonas to cause vascular blight, while cbsA mutagenesis resulted in reduction of vascular or enhanced nonvascular symptom development. Phylogenetic hypothesis testing further revealed that cbsA was lost in multiple nonvascular lineages and more recently gained by some vascular subgroups, suggesting that vascular pathogenesis is ancestral. Our results overall demonstrate how the gain and loss of single loci can facilitate the evolution of complex ecological traits.


Assuntos
Xanthomonas , Bactérias , Hidrolases , Filogenia , Plantas/genética , Xanthomonas/genética
7.
Front Plant Sci ; 11: 1265, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013945

RESUMO

BACKGROUND: Identifying new sources of disease resistance and the corresponding underlying resistance mechanisms remains very challenging, particularly in Monocots. Moreover, the modification of most disease resistance pathways made so far is detrimental to tolerance to abiotic stresses such as drought. This is largely due to negative cross-talks between disease resistance and abiotic stress tolerance signaling pathways. We have previously described the role of the rice ZBED protein containing three Zn-finger BED domains in disease resistance against the fungal pathogen Magnaporthe oryzae. The molecular and biological functions of such BED domains in plant proteins remain elusive. RESULTS: Using Nicotiana benthamiana as a heterologous system, we show that ZBED localizes in the nucleus, binds DNA, and triggers basal immunity. These activities require conserved cysteine residues of the Zn-finger BED domains that are involved in DNA binding. Interestingly, ZBED overexpressor rice lines show increased drought tolerance. More importantly, the disease resistance response conferred by ZBED is not compromised by drought-induced stress. CONCLUSIONS: Together our data indicate that ZBED might represent a new type of transcriptional regulator playing simultaneously a positive role in both disease resistance and drought tolerance. We demonstrate that it is possible to provide disease resistance and drought resistance simultaneously.

8.
PLoS One ; 15(9): e0232566, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32941421

RESUMO

Hydathode is a plant organ responsible for guttation in vascular plants, i.e. the release of droplets at leaf margin or surface. Because this organ connects the plant vasculature to the external environment, it is also a known entry site for several vascular pathogens. In this study, we present a detailed microscopic examination of leaf apical hydathodes in monocots for three crops (maize, rice and sugarcane) and the model plant Brachypodium distachyon. Our study highlights both similarities and specificities of those epithemal hydathodes. These observations will serve as a foundation for future studies on the physiology and the immunity of hydathodes in monocots.


Assuntos
Brachypodium/ultraestrutura , Produtos Agrícolas/ultraestrutura , Oryza/ultraestrutura , Folhas de Planta/ultraestrutura , Saccharum/ultraestrutura , Zea mays/ultraestrutura
9.
Plant Sci ; 298: 110565, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32771166

RESUMO

The Class III peroxidases (CIII Prxs) belong to a plant-specific multigene family. Thanks to their double catalytic cycle they can oxidize compounds or release reactive oxygen species (ROS). They are either involved in different cell wall stiffening processes such as lignification and suberization, in cell wall loosening or defense mechanisms. Germination is an important developmental stage requiring specific peroxidase activity. However, little is known about which isoforms are involved. Five CIII Prx encoding genes: AtPrx04, AtPrx16, AtPrx62, AtPrx69, and AtPrx71 were identified from published microarray data mining. Delayed or induced testa and endosperm rupture were observed for the corresponding CIII Prx mutant lines indicating either a gene-specific inducing or repressing role during germination, respectively. Via in situ hybridization AtPrx16, AtPrx62, AtPrx69 and AtPrx71 transcripts were exclusively localized to the micropylar endosperm facing the radicle, and transcriptomic data analysis enabled positioning the five CIII Prxs in a co-expression network enriched in germination, cell wall, cell wall proteins and xyloglucan hits. Evidence were produced showing that the five CIII Prxs were cell wall-targeted proteins and that the micropylar endosperm displayed a complex cell wall domain topochemistry. Finally, we drew a spatio-temporal model highlighting the fine sequential gene expression and the possible involvement of micropylar endosperm cell wall domains to explain the non-redundant cell wall stiffening and loosening functions of the CIII Prxs in a single cell type. We also highlighted the necessity of a peroxidase homeostasis to accurately control the micropylar endosperm cell wall dynamics during Arabidopsis germination events.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Germinação/genética , Peroxidases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Genes de Plantas , Família Multigênica , Peroxidases/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(43): 21758-21768, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591240

RESUMO

Several Bradyrhizobium species nodulate the leguminous plant Aeschynomene indica in a type III secretion system-dependent manner, independently of Nod factors. To date, the underlying molecular determinants involved in this symbiotic process remain unknown. To identify the rhizobial effectors involved in nodulation, we mutated 23 out of the 27 effector genes predicted in Bradyrhizobium strain ORS3257. The mutation of nopAO increased nodulation and nitrogenase activity, whereas mutation of 5 other effector genes led to various symbiotic defects. The nopM1 and nopP1 mutants induced a reduced number of nodules, some of which displayed large necrotic zones. The nopT and nopAB mutants induced uninfected nodules, and a mutant in a yet-undescribed effector gene lost the capacity for nodule formation. This effector gene, widely conserved among bradyrhizobia, was named ernA for "effector required for nodulation-A." Remarkably, expressing ernA in a strain unable to nodulate A. indica conferred nodulation ability. Upon its delivery by Pseudomonas fluorescens into plant cells, ErnA was specifically targeted to the nucleus, and a fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy approach supports the possibility that ErnA binds nucleic acids in the plant nuclei. Ectopic expression of ernA in A. indica roots activated organogenesis of root- and nodule-like structures. Collectively, this study unravels the symbiotic functions of rhizobial type III effectors playing distinct and complementary roles in suppression of host immune functions, infection, and nodule organogenesis, and suggests that ErnA triggers organ development in plants by a mechanism that remains to be elucidated.


Assuntos
Bradyrhizobium/metabolismo , Fabaceae/microbiologia , Organogênese Vegetal/fisiologia , Nodulação/fisiologia , Nódulos Radiculares de Plantas/metabolismo , Bradyrhizobium/genética , Nitrogenase/genética , Nitrogenase/metabolismo , Organogênese Vegetal/genética , Raízes de Plantas/metabolismo , Pseudomonas fluorescens/genética , Simbiose/fisiologia , Sistemas de Secreção Tipo III/metabolismo
11.
Methods Mol Biol ; 1991: 69-77, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31041764

RESUMO

DNA-binding proteins are involved in the dynamic regulation of various cellular processes such as recombination, replication, and transcription. For investigating dynamic assembly and disassembly of molecular complexes in living cells, fluorescence microscopy represents a tremendous tool in biology. A fluorescence resonance energy transfer (FRET) approach coupled to fluorescence lifetime imaging microscopy (FLIM) has been used recently to monitor protein-DNA associations in plant cells. With this approach, the donor fluorophore is a GFP-tagged binding partner expressed in plant cells. A Sytox® Orange treatment converts nuclear nucleic acids to FRET acceptors. A decrease of GFP lifetime is due to FRET between donor and acceptor, indicating close association of the GFP binding partner and Sytox® Orange-stained DNA. In this chapter, we present a step-by-step protocol for the transient expression in N. benthamiana of GFP-tagged proteins and the fixation and permeabilization procedures used for the preparation of plant material aimed at detecting protein-nucleic acid interactions by FRET-FLIM measurements.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Nicotiana/metabolismo , Ácidos Nucleicos/metabolismo , Proteínas de Plantas/metabolismo , Agrobacterium/fisiologia , Proteínas de Ligação a DNA/análise , Ácidos Nucleicos/análise , Proteínas de Plantas/análise , Nicotiana/genética , Nicotiana/microbiologia
12.
Annu Rev Phytopathol ; 57: 91-116, 2019 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-31100996

RESUMO

Hydathodes are organs found on aerial parts of a wide range of plant species that provide almost direct access for several pathogenic microbes to the plant vascular system. Hydathodes are better known as the site of guttation, which is the release of droplets of plant apoplastic fluid to the outer leaf surface. Because these organs are only described through sporadic allusions in the literature, this review aims to provide a comprehensive view of hydathode development, physiology, and immunity by compiling a historic and contemporary bibliography. In particular, we refine the definition of hydathodes.We illustrate their important roles in the maintenance of plant osmotic balance, nutrient retrieval, and exclusion of deleterious chemicals from the xylem sap. Finally, we present our current understanding of the infection of hydathodes by adapted vascular pathogens and the associated plant immune responses.


Assuntos
Folhas de Planta , Xilema
14.
New Phytol ; 223(1): 397-411, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30802965

RESUMO

Interactions between Leptosphaeria maculans, causal agent of stem canker of oilseed rape, and its Brassica hosts are models of choice to explore the multiplicity of 'gene-for-gene' complementarities and how they diversified to increased complexity in the course of plant-pathogen co-evolution. Here, we support this postulate by investigating the AvrLm10 avirulence that induces a resistance response when recognized by the Brassica nigra resistance gene Rlm10. Using genome-assisted map-based cloning, we identified and cloned two AvrLm10 candidates as two genes in opposite transcriptional orientation located in a subtelomeric repeat-rich region of the genome. The AvrLm10 genes encode small secreted proteins and show expression profiles in planta similar to those of all L. maculans avirulence genes identified so far. Complementation and silencing assays indicated that both genes are necessary to trigger Rlm10 resistance. Three assays for protein-protein interactions showed that the two AvrLm10 proteins interact physically in vitro and in planta. Some avirulence genes are recognized by two distinct resistance genes and some avirulence genes hide the recognition specificities of another. Our L. maculans model illustrates an additional case where two genes located in opposite transcriptional orientation are necessary to induce resistance. Interestingly, orthologues exist for both L. maculans genes in other phytopathogenic species, with a similar genome organization, which may point to an important conserved effector function linked to heterodimerization of the two proteins.


Assuntos
Ascomicetos/genética , Brassica napus/genética , Brassica napus/microbiologia , Epistasia Genética , Ascomicetos/patogenicidade , Sequência Conservada/genética , DNA Intergênico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Loci Gênicos , Genoma Fúngico , Fenótipo , Mapeamento Físico do Cromossomo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ligação Proteica , Sinais Direcionadores de Proteínas , Virulência
15.
Dev Cell ; 48(2): 261-276.e8, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30555001

RESUMO

Plant cell walls are made of polysaccharidic-proteinaceous complex matrices. Molecular interactions governing their organization remain understudied. We take advantage of the highly dynamic cell walls of Arabidopsis seed mucilage secretory cells to propose a hierarchical multi-molecular interaction model within a cell wall domain. We show that the PECTINMETHYLESTERASE INHIBITOR6 activity creates a partially demethylesterified pectin pattern acting as a platform allowing positioning of PEROXIDASE36 in a remote primary cell wall domain during early development. This allows triggering the loosening of this domain during later development, in turn leading to proper physiological function upon mature seed imbibition and germination. We anticipate that this pioneer example of molecular scaffold within a cell wall domain is more widespread through other combinations of the individual molecular players all belonging to large multigenic families. These results highlight the role of cell wall polysaccharide-protein interactions in the organization of cell wall domains.


Assuntos
Parede Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peroxidases/efeitos dos fármacos , Extratos Vegetais/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Mutação/efeitos dos fármacos , Pectinas , Sementes/crescimento & desenvolvimento
16.
Sci Rep ; 7(1): 18069, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273711

RESUMO

Observations of fluorescent cyanine dye behavior under illumination at 500 nm lead to a novel concept in cell biology allowing the development of a new live cell assay called LUCS, for Light-Up Cell System, measuring homeostasis in live cells. Optimization of the LUCS process resulted in a standardized, straightforward and high throughput assay with applications in toxicity assessment. The mechanisms of the LUCS process were investigated. Electron Paramagnetic Resonance experiments showed that the singlet oxygen and hydroxyl radical are involved downstream of the light effect, presumably leading to deleterious oxidative stress that massively opens access of the dye to its intracellular target. Reversible modulation of LUCS by both verapamil and proton availability indicated that plasma membrane proton/cation antiporters, possibly of the MATE drug efflux transport family, are involved. A mechanistic model is presented. Our data show that intracellular oxidation can be controlled by tuning light energy, opening applications in regulatory purposes, anti-oxidant research, chemotherapy efficacy and dynamic phototherapy strategies.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Corantes Fluorescentes , Homeostase , Radical Hidroxila , Oxigênio Singlete
17.
Nat Protoc ; 12(9): 1933-1950, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28837131

RESUMO

DNA-binding proteins (DNA-BPs) and RNA-binding proteins (RNA-BPs) have critical roles in living cells in all kingdoms of life. Various experimental approaches exist for the study of nucleic acid-protein interactions in vitro and in vivo, but the detection of such interactions at the subcellular level remains challenging. Here we describe how to detect nucleic acid-protein interactions in plant leaves by using a fluorescence resonance energy transfer (FRET) approach coupled to fluorescence lifetime imaging microscopy (FLIM). Proteins of interest (POI) are tagged with a GFP and transiently expressed in plant cells to serve as donor fluorophore. After sample fixation and cell wall permeabilization, leaves are treated with Sytox Orange, a nucleic acid dye that can function as a FRET acceptor. Upon close association of the GFP-tagged POI with Sytox-Orange-stained nucleic acids, a substantial decrease of the GFP lifetime due to FRET between the donor and the acceptor can be monitored. Treatment with RNase before FRET-FLIM measurements allows determination of whether the POI associates with DNA and/or RNA. A step-by-step protocol is provided for sample preparation, data acquisition and analysis. We describe how to calibrate the equipment and include a tutorial explaining the use of the FLIM software. To illustrate our approach, we provide experimental procedures to detect the interaction between plant DNA and two proteins (the AeCRN13 effector from the oomycete Aphanomyces euteiches and the AtWRKY22 defensive transcription factor from Arabidopsis). This protocol allows the detection of protein-nucleic acid interactions in plant cells and can be completed in <2 d.


Assuntos
DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Calibragem , DNA de Plantas/análise , DNA de Plantas/química , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/química , Corantes Fluorescentes/química , Folhas de Planta/química , Proteínas de Plantas/análise , Proteínas de Plantas/química , Software
18.
Ann Bot ; 120(3): 417-426, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633407

RESUMO

Background and Aims: The plant Hirtella physophora, the ant Allomerus decemarticulatus and a fungus, Trimmatostroma sp., form a tripartite association. The ants manipulate both the plant trichomes and the fungus to build galleries under the stems of their host plant used to capture prey. In addition to its structural role, the fungus also improves nutrient uptake by the host plant. But it still remains unclear whether the fungus plays an indirect or a direct role in transferring nutrients to the plant. This study aimed to trace the transfer of N from the fungus to the plant's stem tissue. Methods: Optical microscopy and transmission electron microscopy (TEM) were used to investigate the presence of fungal hyphae in the stem tissues. Then, a 15N-labelling experiment was combined with a nanoscale secondary-ion mass spectrometry (NanoSIMS 50) isotopic imaging approach to trace the movement of added 15N from the fungus to plant tissues. Key Results: The TEM images clearly showed hyphae inside the stem tissue in the cellular compartment. Also, fungal hyphae were seen perforating the wall of the parenchyma cell. The 15N provisioning of the fungus in the galleries resulted in significant enrichment of the 15N signature of the plant's leaves 1 d after the 15N-labelling solution was deposited on the fungus-bearing trap. Finally, NanoSIMS imaging proved that nitrogen was transferred biotrophically from the fungus to the stem tissue. Conclusions: This study provides evidence that the fungi are connected endophytically to an ant-plant system and actively transfer nitrogen from 15N-labelling solution to the plant's stem tissues. Overall, this study underlines how complex the trophic structure of ant-plant interactions is due to the presence of the fungus and provides insight into the possibly important nutritional aspects and tradeoffs involved in myrmecophyte-ant mutualisms.


Assuntos
Formigas/fisiologia , Ascomicetos/fisiologia , Chrysobalanaceae/fisiologia , Nitrogênio/metabolismo , Simbiose , Animais , Isótopos de Nitrogênio/análise
19.
Plant Cell ; 29(7): 1555-1570, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28600390

RESUMO

To cause disease, diverse pathogens deliver effector proteins into host cells. Pathogen effectors can inhibit defense responses, alter host physiology, and represent important cellular probes to investigate plant biology. However, effector function and localization have primarily been investigated after overexpression in planta. Visualizing effector delivery during infection is challenging due to the plant cell wall, autofluorescence, and low effector abundance. Here, we used a GFP strand system to directly visualize bacterial effectors delivered into plant cells through the type III secretion system. GFP is a beta barrel that can be divided into 11 strands. We generated transgenic Arabidopsis thaliana plants expressing GFP1-10 (strands 1 to 10). Multiple bacterial effectors tagged with the complementary strand 11 epitope retained their biological function in Arabidopsis and tomato (Solanum lycopersicum). Infection of plants expressing GFP1-10 with bacteria delivering GFP11-tagged effectors enabled direct effector detection in planta. We investigated the temporal and spatial delivery of GFP11-tagged effectors during infection with the foliar pathogen Pseudomonas syringae and the vascular pathogen Ralstonia solanacearum Thus, the GFP strand system can be broadly used to investigate effector biology in planta.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Imagem Molecular/métodos , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Bactérias/genética , Epitopos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Solanum lycopersicum/citologia , Solanum lycopersicum/microbiologia , Células Vegetais/microbiologia , Doenças das Plantas/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Ralstonia/patogenicidade , Nicotiana/genética , Nicotiana/microbiologia , Fatores de Virulência/metabolismo
20.
Mol Biol Evol ; 34(10): 2503-2521, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28535261

RESUMO

Ecological transitions between different lifestyles, such as pathogenicity, mutualism and saprophytism, have been very frequent in the course of microbial evolution, and often driven by horizontal gene transfer. Yet, how genomes achieve the ecological transition initiated by the transfer of complex biological traits remains poorly known. Here, we used experimental evolution, genomics, transcriptomics and high-resolution phenotyping to analyze the evolution of the plant pathogen Ralstonia solanacearum into legume symbionts, following the transfer of a natural plasmid encoding the essential mutualistic genes. We show that a regulatory pathway of the recipient R. solanacearum genome involved in extracellular infection of natural hosts was reused to improve intracellular symbiosis with the Mimosa pudica legume. Optimization of intracellular infection capacity was gained through mutations affecting two components of a new regulatory pathway, the transcriptional regulator efpR and a region upstream from the RSc0965-0967 genes of unknown functions. Adaptive mutations caused the downregulation of efpR and the over-expression of a downstream regulatory module, the three unknown genes RSc3146-3148, two of which encoding proteins likely associated to the membrane. This over-expression led to important metabolic and transcriptomic changes and a drastic qualitative and quantitative improvement of nodule intracellular infection. In addition, these adaptive mutations decreased the virulence of the original pathogen. The complete efpR/RSc3146-3148 pathway could only be identified in the genomes of the pathogenic R. solanacearum species complex. Our findings illustrate how the rewiring of a genetic network regulating virulence allows a radically different type of symbiotic interaction and contributes to ecological transitions and trade-offs.


Assuntos
Mimosa/genética , Ralstonia solanacearum/genética , Evolução Molecular Direcionada , Fabaceae/genética , Redes Reguladoras de Genes/genética , Transferência Genética Horizontal/genética , Genes Bacterianos/genética , Genoma Bacteriano/genética , Mutação , Plasmídeos/genética , Ralstonia solanacearum/patogenicidade , Simbiose/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...