Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687870

RESUMO

Answering a query through a peer-to-peer database presents one of the greatest challenges due to the high cost and time required to obtain a comprehensive response. Consequently, these systems were primarily designed to handle approximation queries. In our research, the primary objective was to develop an intelligent system capable of responding to approximate set-value inquiries. This paper explores the use of particle optimization to enhance the system's intelligence. In contrast to previous studies, our proposed method avoids the use of sampling. Despite the utilization of the best sampling methods, there remains a possibility of error, making it difficult to guarantee accuracy. Nonetheless, achieving a certain degree of accuracy is crucial in handling approximate queries. Various factors influence the accuracy of sampling procedures. The results of our studies indicate that the suggested method has demonstrated improvements in terms of the number of queries issued, the number of peers examined, and its execution time, which is significantly faster than the flood approach. Answering queries poses one of the most arduous challenges in peer-to-peer databases, as obtaining a complete answer is both costly and time-consuming. Consequently, approximation queries have been adopted as a solution in these systems. Our research evaluated several methods, including flood algorithms, parallel diffusion algorithms, and ISM algorithms. When it comes to query transmission, the proposed method exhibits superior cost-effectiveness and execution times.

2.
Comput Electr Eng ; 102: 108212, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35821875

RESUMO

Corona Virus Disease 2019 (COVID-19) has led to an increase in attacks targeting widespread smart devices. A vulnerable device can join multiple botnets simultaneously or sequentially. When different attack patterns are mixed with attack records, the security analyst produces an inaccurate report. There are numerous studies on botnet detection, but there is no publicly available solution to classify attack patterns based on the control periods. To fill this gap, we propose a novel data-driven method based on an intuitive hypothesis: bots tend to show time-related attack patterns within the same botnet control period. We deploy 462 honeypots in 22 countries to capture real-world attack activities and propose an algorithm to identify control periods. Experiments have demonstrated our method's efficacy. Besides, we present eight interesting findings that will help the security community better understand and fight botnet attacks now and in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...