Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 10(4): 1239-1247, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35432955

RESUMO

Three energy-rich protein (ERP) bars were prepared to meet the daily recommended dietary allowance (RDA) for the protein of Pakistani athletes. The bars were developed using dates, cheddar cheese (CC), whey protein isolate (WPI), roasted chickpea flour, and rice flour in different proportions. Bar #1 contained 64 g dates, 16 g dried apricots, 12 g WPI, and 8 g ripened CC. Bar #2 contained the same proportion of these ingredients with an addition of 12.5 g roasted chickpea flour, while bar #3 contained 6.25 g roasted rice and 6.25 g roasted chickpea flour. All the ingredients were homogeneously mixed into paste to form bars weighing 100-110 g per serving size. These bars were studied for the compositional analysis (moisture, protein, and lipid content), protein characterization through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and in vitro determination of the angiotensin I-converting enzyme (ACE-I) antihypertensive activity. Moisture and lipid content in bars were 22% and 0.057%-0.313%, respectively, while protein, fiber, and ash contents varied from 22.3% to 23.6%, 6.66 to 5.81, and 2.12% to 2.44%, respectively. The minimum energy content was recorded (272.70 Kcal/100 g) in bar #1 while bar #3 showed the highest energy content 274.65 Kcal/110 g with the addition of (5%) roasted chickpea and rice flour, respectively. Electrophoresis analysis of proteins in bar # 1 (cheese +WPI) showed the four bands at 62, 24, 20, and 12 kDa. Bar #2 (10% roasted chickpea flour) showed some additional bands at 40, 36, 34, and 28 kDa while relatively lower antihypertensive activity than bars #1 and 3. The study revealed that adding 10% roasted chickpea flour (bar #2) increased the protein content and diversity in proteins. It provided 40% proteins to athletes and could be helpful to meet their R.D.A. by consuming two bars/day.

2.
Ultrason Sonochem ; 86: 105999, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35436672

RESUMO

Fruit juices (FJs) are frequently taken owing to their nutritious benefits, appealing flavour, and vibrant colour. The colours of the FJs are critical indicators of the qualitative features that influence the consumer's attention. Although FJs' intrinsic acidity serves as a barrier to bacterial growth, their enzymatic stability remains an issue for their shelf life. Inactivation of enzymes is critical during FJ processing, and selective inactivation is the primary focus of enzyme inactivation. The merchants, on the other hand, want the FJs to stay stable. The most prevalent technique of processing FJ is by conventional heat treatment, which degrades its nutritive value and appearance. The FJ processing industry has undergone a dramatic transformation from thermal treatments to nonthermal treatments (NTTs) during the past two decades to meet the requirements for microbiological and enzymatic stability. The manufacturers want safe and stable FJs, while buyers want high-quality FJs. According to the past investigation, NTTs have the potential to manufacture microbiologically safe and enzymatically stable FJs with low loss of bioactive components. Furthermore, it has been demonstrated that different NTTs combined with or without other NTTs or mild heating as a hurdle technology increase the synergistic effect for microbiological safety and stability of FJs. Concise information about the variables that affect NTTs' action mode has also been addressed. Primary inactivates enzymes by modifying the protein structure and active site conformation. NTTs may increase enzyme activity depending on the nature of the enzyme contained in FJs, the applied pressure, pH, temperature, and treatment period. This is due to the release of membrane-bound enzymes as well as changes in protein structure and active sites that allow substrate interaction. Additionally, the combination of several NTTs as a hurdle technology, as well as temperature and treatment periods, resulted in increased enzyme inactivation in FJs. Therefore, a combination of thermal and non-thermal technologies is suggested to increase the effectiveness of the process as well as preserve the juice quality.


Assuntos
Manipulação de Alimentos , Sucos de Frutas e Vegetais , Manipulação de Alimentos/métodos , Frutas/química , Temperatura Alta , Valor Nutritivo , Paladar
3.
Food Sci Nutr ; 9(9): 5131-5138, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34532022

RESUMO

Protein-energy malnutrition (PEM) is most prevalent and affecting a large number of children in Pakistan. Ready-to-use therapeutic food (RUTF) is a tackling strategy to overcome the PEM in Pakistan. The present research was designed to formulate RUTF from different indigenous sources. After conducting some preliminary trials, 14 RUTF formulations were developed by mixing peanut, mung bean, and chickpea alone as well as in various combinations with the addition of sugar, powdered milk, oil, and vitamin-mineral premix. Freshly prepared RUTF was stored at room temperature (20 ± 5°C) and packed in aluminum foil for 90 days to investigate the microbiological analysis (total plate count and mold count), water activity (Aw), peroxide value, and thiobarbituric acid (TBA) value. All the parameters showed significant (p < .05) differences among peanut, chickpea, and mung bean-based RUTF except water activity. The storage days and interaction between treatments and storage days also showed a significant (p < .05) effect on water activity, total plate count, mold count, peroxide value, and TBA of RUTF formulations. The present study revealed that the peanut, chickpea, and mung bean can be used in the formulation of RUTF due to their shelf stability and help to mitigate the PEM in Pakistan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...