Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 246: 118129, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211718

RESUMO

The depletion of finite fossil fuel reserves and the severe environmental degradation resulting from human activities have compelled the expeditious development and application of sustainable waste to energy technologies. To encapsulate energy and environment in sustainability paradigm, bio waste based energy production is need to be forged in organic bio refinery setup. According to world bioenergy association, biomass can cover 50 % of the primary energy demand of the world. Therefore, the present study focuses on reforming the energy mix for a clean energy generation, where, sample composition of cotton stalk was acidified in dilute (5% wt.) hydrochloric acid (HCL) for analyzing material burnout patterns in biomass conversion systems utilized in organic bio refinery sector. Advanced thermochemical burning technique, which includes pyrolysis and combustion was applied at four different leaching times from 0 to 180 min under nitrogen environment from 0 °C to 500 °C and air from 500 °C to 900 °C, respectively. Different analyses including proximate, ultimate, gross calorific value (GCV), thermos-gravimetric, kinetic, XRD, FTIR, SEM-EDS were used for analyzing the degradation of demineralized cotton stalk at different treatment rates. Proximate study demonstrated that cotton stalk leaching for 180 min has efficiently infused HCL, leading in a significant increase in fixed carbon and higher heating value of 20.23 % and 12.48%, respectively, as well as a reduction in carbon footprint of around 54.80%. The findings of proximate was validated by GCV analysis and CHNS analysis as value of carbon and hydrogen has shown increasing behavior with the time delay in demineralization Thermo-gravimetric and derivative thermo-gravimetric data analyses shows an increasing trend of conversion efficiency, with the maximum increase of 98 % reported for sample 3H.TT.DEM. XRD characterization has reported 23° to 25° angle for all the observed peaks. Sample 3H.TT.DEM has shown maximum angle inclination along with matured crystalline peak. The latter observations has been validated by FTIR spectroscopy as sample 3H.TT.DEM has reported maximum O-H group formation. Sample 3H.TT.DEM has reported lowest activation energy of 139.51 kJ*mole-1 and lowest reactivity of 0.000293649%*min 0C, due to moderate and stable reactiveness. In SEM examination, increment in pore size and number of pores within the structural matrix of cotton stalk was observed with the enhancement in acidulation process. Furthermore, in EDS analysis, 3H.TT.DEM has shown most balanced distribution of the elements. In this research, sustainable transformation of biomass is envisioned to improve the waste bio refinery system, significantly contributing to the achievement of Sustainable Development Goals 7, 12 and 13.


Assuntos
Carbono , Nitrogênio , Humanos , Biomassa , Nitrogênio/análise , Pirólise , Biocombustíveis/análise
2.
RSC Adv ; 12(46): 29785-29792, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36321096

RESUMO

Biohydrogen (bioH2) is a sustainable energy source that can produce carbon-free energy upon combustion. BioH2 can be generated from microalgae by photolytic and anaerobic digestion (AD) pathways. The AD pathway faces many challenges when scaling up using different bioreactors, particularly the continuous stirred tank reactor (CSTR) and sequential flow batch reactor (SFBR). Therefore, the performance characteristics of SFBR were analysed in this study using Chlorella vulgaris and domestic wastewater activated sludge (WWAS) co-culture. An organic loading rate (OLR) of 4.7 g COD L-1 day-1 was fed to the SFBR with a hydraulic retention time (HRT) of five days in the presence of light under anaerobic conditions. The pH of the medium was maintained at 6 using a pH controller for the incubation period of 15 days. The maximum bioH2 concentrations of 421.1 µmol L-1 and 56.6 µmol L-1 were observed in the exponential and steady-state phases, respectively. The effluent had an unusually high amount of acetate of 16.6 g L-1, which remained high with an average of 11.9 g L-1 during the steady state phase. The amount of bioH2 produced was found to be inadequate but consistent when operating the SFBR with a constant OLR. Because of the limitations in CSTR handling, operating a SFBR by optimizing OLR and HRT might be more feasible in operation for bioH2 yield in upscaling. A logistic function model was also found to be the best fit for the experimental data for the prediction of bioH2 generation using co-culture in the SFBR.

3.
Chemosphere ; 307(Pt 4): 136082, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36028126

RESUMO

The biodesalination potential at different levels of salinity of Phormidium keutzingianum (P. keutzingianum) was investigated. A wide range of salinity from brackish to hypersaline water was explored in this study to ensure the adaptability of P. keutzingianum in extreme stress conditions. Brackish to hypersaline salt solutions were tested at selected NaCl concentrations 10, 30, 50, and 70 g.L-1. Chloride, pH, nitrate, and phosphate were the main parameters measured throughout the duration of the experiment. Biomass growth estimation revealed that the studied strain is adaptable to all the salinities inoculated. During the first growth phase (till day 20), chloride ion was removed up to 43.52% and 45.69% in 10 and 30 g.L-1 of salinity, respectively. Fourier transform infrared spectrometry analysis performed on P. keutzingianum showed the presence of active functional groups at all salinity levels, which resulted in biosorption leading to the bioaccumulation process. Samples for scanning electron microscopy (SEM) analysis supported with electron dispersive X-ray spectroscopy analysis (EDS) showed NaCl on samples already on day 0. This ensures the occurrence of the biosorption process. SEM-EDS results on 10th d showed evidence of additional ions deposited on the outer surface of P. keutzingianum. Calcium, magnesium, potassium, sodium, chloride, phosphorus, and iron were indicated in SEM-EDS analysis proving the occurrence of the biomineralization process. These findings confirmed that P. keutzingianum showed biomass production, biosorption, bioaccumulation, and biomineralization in all salinities; hence, the strain affirms the biodesalination process.


Assuntos
Cianobactérias , Água , Adsorção , Cálcio , Cloretos , Concentração de Íons de Hidrogênio , Ferro , Magnésio , Nitratos , Phormidium , Fosfatos , Fósforo , Potássio , Plantas Tolerantes a Sal , Sódio , Cloreto de Sódio , Espectroscopia de Infravermelho com Transformada de Fourier
4.
J Environ Manage ; 302(Pt A): 113947, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34678537

RESUMO

Phormidium keutzingianum performed biodesalination of brackish water (10 g/L). The electrical conductivity (EC) was measured to evaluate the salt concentration over 80 days of cyanobacterial inoculation. Anion concentrations were measured using ion chromatography to estimate salt removal. EC-based measurements showed ∼8-10% removal efficiency in the first 20 days. However, the removal efficiency based on chloride ion concentration showed ∼40% removal in the same time frame. The pH increase was observed with growth of algal biomass. The increasing pH proposes the formation of hydroxyl and carbonate ions. Sulfuric acid was added at day 110 to neutralize them. At pH 4, the EC reduced significantly to about ∼37% confirming the chloride removal. EC should not be used to measure salt reduction as it is an obscure parameter, and therefore, EC is not the best choice to measure salinity removal using algae. Some recently published studies used only EC to estimate biodesalination, and it is anticipated that salt removal is misrepresented in those studies.


Assuntos
Cianobactérias , Cloretos , Condutividade Elétrica , Salinidade , Cloreto de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...