Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Ecotoxicol Environ Saf ; 271: 115992, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262092

RESUMO

Nanoparticles (NPs) of metals and metal oxides have received increasing attention regarding their characteristic behavior in plant systems. The fate and transport of metal NPs and metal oxide NPs in plants is of emerging concern for researchers because they ultimately become part of the food chain. The widespread use of metal-based NPs (MBNPs) in plants has revealed their beneficial and harmful effects. This review addresses the main factors affecting the uptake, translocation, absorption, bioavailability, toxicity, and accumulation of MBNPs in different plant species. It appraises the mechanism of nanoparticle-plant interaction in detail and provides understanding of the estimation strategies for the associated pros and cons with this interplay. Critical parameters of NPs include, but are not limited to, particle size and shape, surface chemistry, surface charge, concentration, solubility, and exposure route. On exposure to MBNPs, the molecular, physiological, and biochemical reactions of plants have been assessed. We have filled knowledge gaps and answered research questions regarding the positive and negative effects of metal and metal oxide NPs on seed germination, callus induction, growth and yield of plant, nutritional content, antioxidants, and enzymes. Besides, the phytotoxicity, cytotoxicity, genotoxicity, and detoxification studies of MBNPs in plants have been outlined. Furthermore, the recent developments and future perspectives of the two-way traffic of interplay of MBNPs and plants have been provided in this comprehensive review.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxidos/toxicidade , Plantas , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Metais/toxicidade , Antioxidantes/farmacologia
3.
Front Pharmacol ; 14: 1273786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116085

RESUMO

Inonotus obliquus (Chaga mushroom) is an inexpensive fungus with a broad range of traditional and medicinal applications. These applications include therapy for breast, cervix, and skin cancers, as well as treating diabetes. However, its benefits are virtually untapped due to a limited understanding of its mycochemical composition and bioactivities. In this article, we explore the ethnobotany, mycochemistry, pharmacology, traditional therapeutic, cosmetic, and prospective agricultural uses. The review establishes that several secondary metabolites, such as steroids, terpenoids, and other compounds exist in chaga. Findings on its bioactivity have demonstrated its ability as an antioxidant, anti-inflammatory, antiviral, and antitumor agent. The study also demonstrates that Chaga powder has a long history of traditional use for medicinal purposes, pipe smoking rituals, and mystical future forecasts. The study further reveals that the applications of Chaga powder can be extended to industries such as pharmaceuticals, food, cosmetics, and agriculture. However numerous publications focused on the pharmaceutical benefits of Chaga with few publications on other applications. Overall, chaga is a promising natural resource with a wide range of potential applications and therefore the diverse array of therapeutic compounds makes it an attractive candidate for various applications such as plant biofertilizers and active ingredients in cosmetics and pharmaceutical products. Thus, further exploration of Chaga's potential benefits in agriculture and other industries could lead to exciting new developments and innovations.

4.
Cureus ; 15(10): e46718, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38022112

RESUMO

Introduction Heparan sulfate proteoglycans (HSPGs) belong to the syndecan family, and syndecan-1 (CD138) is a heparan sulfate proteoglycan. Syndecan-1 has a potential role in cell-matrix and cell-cell communications as they are present in cell epithelium. Its expression is different in an extensive range of benign, inflammatory, and neoplastic diseases. In routine histopathology, it is used as a marker for plasma cells. However, it is expressed in a large variety of normal and neoplastic epithelia including squamous epithelium and gastric glandular epithelium expressed in other tissues, i.e., the liver. In the liver, variable expression is seen in cirrhosis, hepatitis, and carcinoma. The objective of this study was to investigate the expression of this marker in normal, inflammatory, and neoplastic lesions of the liver. This in turn may help clinicians to select patients who may benefit from anti-CD138 therapy. It is currently used in the diagnosis and management of plasma cell proliferations. Material and methods This is a retrospective study in which we retrieved 53 formalin-fixed paraffin-embedded (FFPE) liver specimen blocks and selected one block from each case by reviewing the hematoxylin and eosin (H&E) slides of each case. Syndecan-1 (CD138), pancytokeratin, and CD68 expression were analyzed immunohistochemically (IHC) to evaluate the percentage and intensity of CD138 expression in various hepatic entities and identify those entities where syndecan-1 can be consistently used to make a definitive diagnosis. Results The expression of pancytokeratin and CD68 was analyzed in hepatocytes and Kupffer cells, respectively. For syndecan-1 (CD138), 15.4% of cases showed basolateral membranous positivity, 44.6% of cases showed complete membranous positivity, and 40% of cases showed no positivity in hepatocytes. Cytokeratin (CK) was positive as expected in hepatocytes, and CD68 was expressed in Kupffer cells. Conclusion CD138 does not appear to be a reliable surrogate marker for liver disease. However, it may be included with other ancillary markers as a predictor of the stage of chronic liver disease and metastatic potential. The response to anti-CD138 therapy needs to be further studied.

5.
Biochem Cell Biol ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906957

RESUMO

Globally, retinal disorders impact thousands of individuals. Early diagnosis and treatment of these anomalies might halt their development and prevent many people from developing preventable blindness. Iris spot segmentation is critical due to acquiring iris cellular images that suffer from the off-angle iris, noise, and specular reflection. Most currently used iris segmentation techniques are based on edge data and noncellular images. The size of the pigment patches on the surface of the iris increases with eye syndrome. In addition, iris images taken in uncooperative settings frequently have negative noise, making it difficult to segment them precisely. The traditional diagnosis processes are costly and time consuming since they require highly qualified personnel and have strict environments. This paper presents an explainable deep learning model integrated with a multiclass support vector machine to analyze iris cellular images for early pigment spot segmentation and classification. Three benchmark datasets MILE, UPOL, and Eyes SUB were used in the experiments to test the proposed methodology. The experimental results are compared on standard metrics, demonstrating that the proposed model outperformed the methods reported in the literature regarding classification errors. Additionally, it is observed that the proposed parameters are highly effective in locating the micro pigment spots on the iris surfaces.

6.
Environ Sci Pollut Res Int ; 30(41): 93323-93344, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37544947

RESUMO

Nanotechnology is rapidly emerging and innovative interdisciplinary field of science. The application of nanomaterials in agricultural biotechnology has been exponentially increased over the years that could be attributed to their uniqueness, versatility, and flexibility. The overuse of nanomaterials makes it crucial to determine their fate and distribution in the in vitro (in cell and tissue cultures) and in vivo (in living species) biological environments by investigating the nano-biointerface. The literature states that the beneficial effects of nanoparticles come along with their adverse effects, subsequently leading to an array of short-term and long-term toxicities. It has been evident that the interplay of nanoparticles with abiotic and biotic communities produces several eco-toxicological effects, and the physiology and biochemistry of crops are greatly influenced by the metabolic alterations taking place at cellular, sub-cellular, and molecular levels. Numerous risk factors affect nanoparticle's accumulation, translocation, and associated cytogenotoxicity. This review article summarizes the contributing factors, possible mechanisms, and risk assessment of hazardous effects of various types of nanoparticles to plant health. The methods for evaluating the plant nanotoxicity parameters have been elaborated. Conclusively, few recommendations are put forward for designing safer, high-quality nanomaterials to protect and maintain environmental safety for smarter agriculture demanded by researchers and industrialists.


Assuntos
Nanopartículas , Nanoestruturas , Nanoestruturas/toxicidade , Nanopartículas/toxicidade , Nanopartículas/química , Nanotecnologia/métodos , Produtos Agrícolas , Medição de Risco
7.
Front Pharmacol ; 14: 1200269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397476

RESUMO

Cannabis sativa, also known as "hemp" or "weed," is a versatile plant with various uses in medicine, agriculture, food, and cosmetics. This review attempts to evaluate the available literature on the ecology, chemical composition, phytochemistry, pharmacology, traditional uses, industrial uses, and toxicology of Cannabis sativa. So far, 566 chemical compounds have been isolated from Cannabis, including 125 cannabinoids and 198 non-cannabinoids. The psychoactive and physiologically active part of the plant is a cannabinoid, mostly found in the flowers, but also present in smaller amounts in the leaves, stems, and seeds. Of all phytochemicals, terpenes form the largest composition in the plant. Pharmacological evidence reveals that the plants contain cannabinoids which exhibit potential as antioxidants, antibacterial agents, anticancer agents, and anti-inflammatory agents. Furthermore, the compounds in the plants have reported applications in the food and cosmetic industries. Significantly, Cannabis cultivation has a minimal negative impact on the environment in terms of cultivation. Most of the studies focused on the chemical make-up, phytochemistry, and pharmacological effects, but not much is known about the toxic effects. Overall, the Cannabis plant has enormous potential for biological and industrial uses, as well as traditional and other medicinal uses. However, further research is necessary to fully understand and explore the uses and beneficial properties of Cannabis sativa.

8.
Micromachines (Basel) ; 14(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37512683

RESUMO

The application of green synthesis for silver nanoparticles in nanomedicine has experienced significant growth. Strobilanthes glutinosus, a plant primarily located in the Himalayas, remains largely unexplored. Considering the biomedical value of S. glutinosus, phytochemicals from this plant were used for the biosynthesis of silver nanoparticles. Silver nanoparticles were synthesized from aqueous extract of root and leaves of Strobilanthes glutinosus. The synthesized silver nanoparticles were characterized using UV-Vis spectrophotometry, Fourier-transform infrared spectroscopy, transmission electron microscopy, and X-ray diffraction. Total phenolic and flavonoid contents of plants were determined and compared with nanoparticles. The biomedical efficacy of plant extracts and silver nanoparticles was assessed using antioxidant and antibacterial assays. The UV-Vis spectra of leaf- and root-extract-mediated AgNPs showed characteristic peaks at 428 nm and 429 nm, respectively. TEM images revealed the polycrystalline and spherical shapes of leaf- and root-extract-mediated AgNPs with size ranges of 15-60 nm and 20-52 nm, respectively. FTIR findings shown the involvement of phytochemicals of root and leaf extracts in the reduction of silver ions into silver nanoparticles. The crystalline face-centered cubic structure of nanoparticles is depicted by the XRD spectra of leaf and root AgNPs. The plant has an ample amount of total phenolic content (TPC) and total flavonoid content (TFC), which enhance the scavenging activity of plant samples and their respective AgNPs. Leaf and root AgNPs have also shown good antibacterial activity, which may enhance the medicinal value of AgNPs.

9.
Plant Physiol Biochem ; 201: 107807, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37311291

RESUMO

Nanotechnology has recently been emerged as a transformative technology that offers efficient and sustainable options for nano-bio interface. There has been a considerable interest in exploring the factors affecting elicitation mechanism and nanomaterials have been emerged as strong elicitors in medicinal plants. Stevia rebaudiana is well-known bio-sweetener and the presence of zero calorie, steviol glycosides (SGs) in the leaves of S. rebaudiana have made it a desirable crop to be cultivated on large scale to obtain its higher yield and maximal content of high quality natural sweeteners. Besides, phenolics, flavonoids, and antioxidants are abundant in stevia which contribute to its medicinal importance. Currently, scientists are trying to increase the market value of stevia by the enhancement in production of its bioactive compounds. As such, various in vitro and cell culture strategies have been adopted. In stevia agronanotechnology, nanoparticles behave as elicitors for the triggering of its secondary metabolites, specifically rebaudioside A. This review article discusses the importance of S. rebaudiana and SGs, conventional approaches that have failed to increase the desired yield and quality of stevia, modern approaches that are currently being applied to obtain utmost benefits of SGs, and future needs of advanced technologies for further exploitation of this wonder of nature.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Stevia/metabolismo , Glucosídeos/metabolismo , Edulcorantes/metabolismo , Flavonoides/metabolismo , Diterpenos do Tipo Caurano/metabolismo , Folhas de Planta/metabolismo , Glicosídeos/metabolismo
10.
Sci Total Environ ; 894: 164861, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343875

RESUMO

The application of pristine nanomaterials (PNMs) for environment remediation remains challenging due to inherently high potential for aggregation, low stability, sub-optimum efficiency, and non-uniformity in size and toxicity. Conversely, modified nanomaterials (MNMs) approaches have shown significant potential to enhance the technical and economic efficiency of conventional nanoscale remediation strategies by decreasing aggregation of nanomaterials by imparting electrostatic, electrosteric or steric repulsion between particles. Furthermore, the solubility enhancing agents in MNMs have been shown to increase metal bioavailability and accelerate the breakdown of pollutants. As such, it is imperative to modify nanomaterials for unlocking their full potential and expanding their range of applications. However, there is no comprehensive review in the literature that evaluates the efficacy and environmental impact of MNMs against PNMs in the environment. This critical review identifies major barriers preventing the widescale application of nano-enabled remediation and discusses strategies to increase the stability and activity of nanomaterials at reaction sites. The higher reactivity and versatility of MNMs, along with novel properties and functionalities, enable effective removal of a range of chemical pollutants from complex environmental matrices. Additionally, MNMs show significant improvement in mobility, reactivity, and controlled and targeted release of active ingredients for in situ remediation. However, the uncertainties associated with the adverse effects of some modification agents of MNMs are not well-understood, and require further in-depth investigations. Overall, our findings show that MNMs are potentially more efficient, cost-effective, and resilient for remediation of soil and sediment, water, and air pollution than PNMs. The possible action mechanisms of MNMs have been demonstrated for different environmental compartments. Conclusively, this work provides a path forward for developing effective nano-enabled remediation technologies with MNMs, which are widely applicable to a range of environmental contamination scenarios.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Nanoestruturas , Nanoestruturas/toxicidade , Poluição Ambiental , Metais
11.
Plant Physiol Biochem ; 200: 107741, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37192582

RESUMO

Ammi visnaga L. is an enriched medicinal plant with medicinally important compounds. Two types of nanoparticles (NPs) including silica (SiO2) and graphene oxide bound with SiO2 (GO-SiO2) NPs at different concentrations (0, 15, 25 mg L-1) were used as elicitors to investigate their effects on callus morphology, H2O2 content, total phenolic content (TPC), total flavonoids content (TFC), ferric reducing/antioxidant power (FRAP), and few antioxidant enzymes such as catalase (CAT), guaiacol peroxidase (GPX), superoxide dismutase (SOD), ascorbate peroxidase (APX), and polyphenol oxidase (PPO) in the callus cultures of A. visnaga. The effects of elicitation of both NPs on calli were observed using a scanning electron microscope (SEM). The 15 mg L-1 concentration of GO-SiO2 NPs produced the highest TPC (193.3 mg GAE g-1 FW), CAT (13.1 U mg-1 Protein), GPX (0.0089 U mg-1 Protein), and APX (0.079 U mg-1 Protein). Whereas, the maximum content of H2O2 (0.68 µmol g-1 FW), FRAP (0.0092 µmol mg-1), and TFC (62.27 mg QE g-1 FW) was observed at 25 mg L-1 and 15 mg L-1 of SiO2 NPs, respectively. Conclusively, in the callus culture of A. visnaga, the 15 mg L-1 concentration of GO-SiO2 NPs was the most suitable dosage for enhancing the enzymatic antioxidant activities (CAT, GPX, APX) and TPC, rather than SiO2 NPs.


Assuntos
Ammi , Apiaceae , Nanopartículas , Antioxidantes/metabolismo , Ammi/metabolismo , Dióxido de Silício/farmacologia , Apiaceae/metabolismo , Peróxido de Hidrogênio , Flavonoides/metabolismo , Compostos Fitoquímicos , Fenóis/metabolismo
13.
3 Biotech ; 13(3): 104, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36875960

RESUMO

Plant growth regulators tagged on metallic oxide nanoparticles (NPs) may function as nanofertilizers with reduced toxicity of NPs. CuO NPs were synthesized to function as nanocarriers of Indole-3-acetic acid (IAA). Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed 30.4 nm size of NPs and sheet-like structure, respectively, of CuO-IAA NPs. Fourier-transform infrared spectroscopy (FTIR) confirmed CuO-IAA formation. IAA-decorated CuO NPs enhanced the physiological parameters of Chickpea plants, i.e., root length, shoot length, and biomass compared to naked CuO NPs. The variation in physiological response was due to change of phytochemical contents in plants. Phenolic content increased up to 17.98 and 18.13 µgGAE/mg DW at 20 and 40 mg/L of CuO-IAA NPs, respectively. However, significant decrease in antioxidant enzymes' activity was recorded compared to control. Presence of CuO-IAA NPs increased the reducing potential of plants at higher concentration of NPs, while decrease in total antioxidant response was observed. This study concludes that IAA conjugation to CuO NPs reduces toxicity of NPs. Furthermore, NPs can be explored as nanocarriers for plant modulators and slow release in future studies.

14.
Front Bioeng Biotechnol ; 11: 1103435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937756

RESUMO

Introduction: The porcine nerve-derived extracellular matrix (ECM) fabricated as films has good performance in peripheral nerve regeneration. However, when constructed as conduits to bridge nerve defects, ECM lacks sufficient mechanical strength. Methods: In this study, a novel electrospun bilayer-structured nerve conduit (BNC) with outer poly (L-lactic acid-co-ε-caprolactone) (PLA-PCL) and inner ECM was fabricated for nerve regeneration. The composition, structure, and mechanical strength of BNC were characterized. Then BNC biosafety was evaluated by cytotoxicity, subcutaneous implantation, and cell affinity tests. Furthermore, BNC was used to bridge 10-mm rat sciatic nerve defect, and nerve functional recovery was assessed by walking track, electrophysiology, and histomorphology analyses. Results: Our results demonstrate that BNC has a network of nanofibers and retains some bioactive molecules, including collagen I, collagen IV, laminin, fibronectin, glycosaminoglycans, nerve growth factor, and brain-derived neurotrophic factor. Biomechanical analysis proves that PLA-PCL improves the BNC mechanical properties, compared with single ECM conduit (ENC). The functional evaluation of in vivo results indicated that BNC is more effective in nerve regeneration than PLA-PCL conduit or ENC. Discussion: In conclusion, BNC not only retains the good biocompatibility and bioactivity of ECM, but also obtains the appropriate mechanical strength from PLA-PCL, which has great potential for clinical repair of nerve defects.

15.
Appl Microbiol Biotechnol ; 107(4): 1039-1061, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36635395

RESUMO

Versatile nature of copper oxide nanoparticles (CuO NPs) has made them an imperative nanomaterial being employed in nanomedicine. Various physical, chemical, and biological methodologies are in use for the preparation of CuO NPs. The physicochemical and biological properties of CuO NPs are primarily affected by their method of fabrication; therefore, selectivity of a synthetic technique is immensely important that makes these NPs appropriate for a specific biomedical application. The deliberate use of CuO NPs in biomedicine questions their biocompatible nature. For this reason, the present review has been designed to focus on the approaches employed for the synthesis of CuO NPs; their biomedical applications highlighting antimicrobial, anticancer, and antioxidant studies; and most importantly, the in vitro and in vivo toxicity associated with these NPs. This comprehensive overview of CuO NPs is unique and novel as it emphasizes on biomedical applications of CuO NPs along with its toxicological assessments which would be useful in providing core knowledge to researchers working in these domains for planning and conducting futuristic studies. KEY POINTS: • The recent methods for fabrication of CuO nanoparticles have been discussed with emphasis on green synthesis methods for different biomedical approaches. • Antibacterial, antioxidant, anticancer, antiparasitic, antidiabetic, and antiviral properties of CuO nanoparticles have been explained. • In vitro and in vivo toxicological studies of CuO nanoparticles exploited along with their respective mechanisms.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanopartículas , Antioxidantes/farmacologia , Cobre/toxicidade , Cobre/química , Nanopartículas/toxicidade , Nanopartículas/química , Anti-Infecciosos/toxicidade , Antibacterianos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
16.
Neural Regen Res ; 18(3): 671-682, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36018193

RESUMO

The functional properties of endogenous Schwann cells (SCs) during nerve repair are dynamic. Optimizing the functional properties of SCs at different stages of nerve repair may have therapeutic benefit in improving the repair of damaged nerves. Previous studies showed that miR-221-3p promotes the proliferation and migration of SCs, and miR-338-3p promotes the myelination of SCs. In this study, we established rat models of sciatic nerve injury by bridging the transected sciatic nerve with a silicone tube. We injected a miR-221 lentiviral vector system together with a doxycycline-inducible Tet-On miR-338 lentiviral vector system into the cavity of nerve conduits of nerve stumps to sequentially regulate the biological function of endogenous SCs at different stages of nerve regeneration. We found that the biological function of SCs was sequentially regulated, the diameter and density of myelinated axons were increased, the expression levels of NF200 and myelin basic protein were increased, and the function of injured peripheral nerve was improved using this system. miRNA Target Prediction Database prediction, Nanopore whole transcriptome sequencing, quantitative PCR, and dual luciferase reporter gene assay results predicted and verified Cdkn1b and Nrp1 as target genes of miR-221-3p and miR-338-3p, respectively, and their regulatory effects on SCs were confirmed in vitro. In conclusion, here we established a new method to enhance nerve regeneration through sequential regulation of biological functions of endogenous SCs, which establishes a new concept and model for the treatment of peripheral nerve injury. The findings from this study will provide direct guiding significance for clinical treatment of sciatic nerve injury.

17.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36142435

RESUMO

The over-growth and coagulation of nanoparticles is prevented using capping agents by the production of stearic effect that plays a pivotal role in stabilizing the interface. This strategy of coating the nanoparticles' surface with capping agents is an emerging trend in assembling multipurpose nanoparticles that is beneficial for improving their physicochemical and biological behavior. The enhancement of reactivity and negligible toxicity is the outcome. In this review article, an attempt has been made to introduce the significance of different capping agents in the preparation of nanoparticles. Most importantly, we have highlighted the recent progress, existing roadblocks, and upcoming opportunities of using surface modified nanoparticles in nanomedicine from the drug and gene delivery, bioimaging, and biosensing perspectives.


Assuntos
Nanopartículas , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina , Preparações Farmacêuticas
18.
IET Nanobiotechnol ; 16(5): 171-189, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35411585

RESUMO

Titanium dioxide (TiO2 ) nanoparticles (NPs) are one of the topmost widely used metallic oxide nanoparticles. Whether present in naked form or doped with metals or polymers, TiO2 NPs perform immensely important functions. However, the alteration in size and shape by doping results in improving the physical, chemical, and biological behaviour of TiO2 NPs. Hence, the differential effects of various TiO2 nanostructures including nanoflakes, nanoflowers, and nanotubes in various domains of biotechnology have been elucidated by researchers. Recently, the exponential growth of research activities regarding TiO2 NPs has been observed owing to their chemical stability, low toxicity, and multifaceted properties. Because of their enormous abundance, plants, humans, and environment are inevitably exposed to TiO2 NPs. These NPs play a significant role in improving agricultural attributes, removing environmental pollution, and upgrading the domain of nanomedicine. Therefore, the currently ongoing studies about the employment of TiO2 NPs in enhancement of different aspects of agriculture, environment, and medicine have been extensively discussed in this review.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Nanotubos , Biotecnologia , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanopartículas/química , Titânio/química
19.
Ecotoxicol Environ Saf ; 233: 113342, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35228028

RESUMO

The objective of this study was to investigate the effects of co-exposure of iron and microplastics (MPs) on the cognitive function of aged humans and animals. It was already known that individual iron or MPs exposure can initiate potential neurotoxicity. However, the combined effect of MPs and iron remained to be elucidated. In this study, the toxicity of iron, MPs, co-treatment of MPs & iron, and the underlying mechanisms were evaluated in vivo. Our findings suggest that 5 µm MPs could enter the aging mice brain and accumulate in cortex and hippocampus. In addition, MPs and iron have a good binding ability, therefore, co-exposure of MPs & iron cause significant iron overload and cognitive deficits as compared to control and individual treatments of iron and MPs. Moreover, the lipid peroxidation and inflammation, which are involved in ferroptosis, get significantly elevated by co-exposure of iron and MPs. Taken together, our results provide compelling evidence that co-exposure of iron and MPs could aggravate the cognitive impairment via disturbing brain iron homeostasis and inducing ferroptosis in cognitive-related brain areas, what's more, the results warn that MPs may act as vectors of pollutants (mostly heavy metals) increasing the health burden on body.


Assuntos
Disfunção Cognitiva , Ferroptose , Poluentes Químicos da Água , Envelhecimento , Animais , Disfunção Cognitiva/induzido quimicamente , Ferro/toxicidade , Camundongos , Microplásticos , Plásticos , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade
20.
Biotechnol Appl Biochem ; 69(5): 2008-2016, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34605559

RESUMO

This study reports the increment in the secondary metabolites in Stevia rebaudiana plant after exposure to the elimination of Ca and Mg from Murashige and Skoog culture medium. The effect of nutrient stress on regenerants of S. rebaudiana is measured, which reveals significantly enhanced growth parameters, steviol glycosides (SGs) content, and nonenzymatic antioxidants; total phenolic content, total flavonoid content, total antioxidant capacity, total reducing power, and DPPH-free radical scavenging activity as compared with the control treatment. However, significantly highest amounts are obtained in a medium with only Ca deficiency. The amount of rebaudioside A (Reb A) and stevioside (ST) obtained in the case of Ca-deficient medium is 4.08 and 0.69%, respectively. It is followed by the results obtained from both Ca- and Mg-deprived medium [Reb A (3.23%) and ST (0.52%)] and the lowest values are obtained from medium lacking Mg only [Reb A (2.60%) and ST (0.40%)]. The most probable adaptation mechanism might be the production of reactive oxygen species by nutrients' stress, which results in secondary metabolites production as defensive moieties to overcome stress situation. This effective protocol needs to be refined to apply on an industrial scale in bioreactors for increasing quantities of commercially important pharmaceutical compounds.


Assuntos
Stevia , Stevia/metabolismo , Magnésio/metabolismo , Cálcio/metabolismo , Biomassa , Folhas de Planta/metabolismo , Antioxidantes/farmacologia , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...