Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 159(3): 1036-1050.e8, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32445858

RESUMO

BACKGROUND & AIMS: Calcineurin is a ubiquitously expressed central Ca2+-responsive signaling molecule that mediates acute pancreatitis, but little is known about its effects. We compared the effects of calcineurin expression by hematopoietic cells vs pancreas in mouse models of pancreatitis and pancreatitis-associated lung inflammation. METHODS: We performed studies with mice with hematopoietic-specific or pancreas-specific deletion of protein phosphatase 3, regulatory subunit B, alpha isoform (PPP3R1, also called CNB1), in mice with deletion of CNB1 (Cnb1UBC△/△) and in the corresponding controls for each deletion of CNB1. Acute pancreatitis was induced in mice by administration of caerulein or high-pressure infusion of radiocontrast into biliopancreatic ducts; some mice were also given intraductal infusions of an adeno-associated virus vector that expressed nuclear factor of activated T -cells (NFAT)-luciferase into pancreas. Pancreas, bone marrow, liver, kidney, heart, and lung were collected and analyzed by histopathology, immunohistochemistry, and immunoblots; levels of cytokines were measured in serum. Mouse and human primary pancreatic acinar cells were transfected with a vector that expressed NFAT-luciferase and incubated with an agent that blocks interaction of NFAT with calcineurin; cells were analyzed by immunofluorescence. Calcineurin-mediated neutrophil chemotaxis and reactive oxygen species production were measured in neutrophils from mice. RESULTS: Mice with hematopoietic-specific deletion of CNB1 developed the same level of local pancreatic inflammation as control mice after administration of caerulein or infusion of radiocontrast into biliopancreatic ducts. Cnb1UBC△/△ mice or mice with pancreas-specific deletion of CNB1 developed less severe pancreatitis and reduced pancreatic inflammation after administration of caerulein or infusion of radiocontrast into biliopancreatic ducts compared with control mice. NFAT was activated in pancreas of Swiss Webster mice given caerulein or infusions of radiocontrast into biliopancreatic ducts. Blocking the interaction between calcineurin and NFAT did not reduce pancreatic acinar cell necrosis in response to caerulein or infusions of radiocontrast. Mice with hematopoietic-specific deletion of CNB1 (but not mice with pancreas-specific deletion of CNB1) had reduced infiltration of lung tissues by neutrophils. Neutrophil chemotaxis and production of reactive oxygen species were decreased after incubation with a calcineurin inhibitor. CONCLUSIONS: Hematopoietic and neutrophil expression of calcineurin promotes pancreatitis-associated lung inflammation, whereas pancreatic calcineurin promotes local pancreatic inflammation. The findings indicate that the protective effects of blocking or deleting calcineurin on pancreatitis are mediated by the source of its expression. This information should be used in the development of strategies to inhibit calcineurin for the prevention of pancreatitis and pancreatitis-associated lung inflammation.


Assuntos
Lesão Pulmonar Aguda/imunologia , Inibidores de Calcineurina/uso terapêutico , Calcineurina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Musculares/metabolismo , Pancreatite/imunologia , Células Acinares/metabolismo , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Calcineurina/genética , Calcineurina/imunologia , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Ceruletídeo/administração & dosagem , Ceruletídeo/toxicidade , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Pâncreas/citologia , Pâncreas/imunologia , Pâncreas/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/complicações , Pancreatite/tratamento farmacológico , Cultura Primária de Células
2.
Sci Transl Med ; 12(525)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915301

RESUMO

The exocrine pancreas expresses the highest concentrations of fibroblast growth factor 21 (FGF21) in the body, where it maintains acinar cell proteostasis. Here, we showed in both mice and humans that acute and chronic pancreatitis is associated with a loss of FGF21 expression due to activation of the integrated stress response (ISR) pathway. Mechanistically, we found that activation of the ISR in cultured acinar cells and mouse pancreata induced the expression of ATF3, a transcriptional repressor that directly bound to specific sites on the Fgf21 promoter and resulted in loss of FGF21 expression. These ATF3 binding sites are conserved in the human FGF21 promoter. Consistent with the mouse studies, we also observed the reciprocal expression of ATF3 and FGF21 in the pancreata of human patients with pancreatitis. Using three different mouse models of pancreatitis, we showed that pharmacologic replacement of FGF21 mitigated the ISR and resolved pancreatitis. Likewise, inhibition of the ISR with an inhibitor of the PKR-like endoplasmic reticulum kinase (PERK) also restored FGF21 expression and alleviated pancreatitis. These findings highlight the importance of FGF21 in preserving exocrine pancreas function and suggest its therapeutic use for prevention and treatment of pancreatitis.


Assuntos
Fatores de Crescimento de Fibroblastos/deficiência , Pancreatite/terapia , Células Acinares/metabolismo , Células Acinares/patologia , Fator 3 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição , Animais , Sequência de Bases , Regulação para Baixo , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/metabolismo , Humanos , Proteínas Klotho , Camundongos Knockout , Pâncreas Exócrino/patologia , Pancreatite/genética , Pancreatite/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-31421261

RESUMO

Asparaginase (ASNase) causes pancreatitis in approximately 10% of leukemia patients, and the mechanisms underlying this painful complication are not known. ASNase primarily depletes circulating asparagine, and the endogenously expressed enzyme, asparagine synthetase (ASNS), replenishes asparagine. ASNS was suggested previously to be highly expressed in the pancreas. In this study, we determined the expression pattern of ASNS in the pancreas and the mechanism for increased pancreatic ASNS abundance. Compared with other organs, ASNS was highly expressed in both the human and mouse pancreas, and, within the pancreas, ASNS was present primarily in the acinar cells. The high baseline pancreatic ASNS was associated with higher baseline activation of protein kinase R-like endoplasmic reticulum kinase (PERK) signaling in the pancreas, and inhibition of PERK in acinar cells lessened ASNS expression. ASNase exposure, but not the common pancreatitis triggers, uniquely up-regulated ASNS expression, indicating that the increase is mediated by nutrient stress. The up-regulation of acinar ASNS with ASNase exposure was owing to increased transcriptional rather than delayed degradation. Knockdown of ASNS in the 266-6 acinar cells provoked acinar cell injury and worsened ASNase-induced injury, whereas ASNS overexpression protected against ASNase-induced injury. In summary, ASNS is highly expressed in the pancreatic acinar cells through heightened basal activation of PERK, and ASNS appears to be crucial to maintaining acinar cell integrity. The implications are that ASNS is especially hardwired in the pancreas to protect against both baseline perturbations and nutrient deprivation stressors, such as during ASNase exposure.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Pâncreas/patologia , Pancreatite/patologia , eIF-2 Quinase/metabolismo , Células Acinares/patologia , Animais , Asparaginase/administração & dosagem , Asparaginase/metabolismo , Asparagina/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Linhagem Celular , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Pâncreas/citologia , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima , eIF-2 Quinase/antagonistas & inibidores
4.
Gastroenterology ; 155(4): 1250-1263.e5, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29928898

RESUMO

BACKGROUND & AIMS: Pancreatitis after endoscopic retrograde cholangiopancreatography (PEP) is thought to be provoked by pancreatic ductal hypertension, via unknown mechanisms. We investigated the effects of hydrostatic pressures on the development of pancreatitis in mice. METHODS: We performed studies with Swiss Webster mice, B6129 mice (controls), and B6129 mice with disruption of the protein phosphatase 3, catalytic subunit, ßisoform gene (Cnab-/- mice). Acute pancreatitis was induced in mice by retrograde biliopancreatic ductal or intraductal infusion of saline with a constant hydrostatic pressure while the proximal common bile duct was clamped -these mice were used as a model of PEP. Some mice were given pancreatic infusions of adeno-associated virus 6-nuclear factor of activated T-cells-luciferase to monitor calcineurin activity or the calcineurin inhibitor FK506. Blood samples and pancreas were collected at 6 and 24 hours and analyzed by enzyme-linked immunosorbent assay, histology, immunohistochemistry, or fluorescence microscopy. Ca2+ signaling and mitochondrial permeability were measured in pancreatic acinar cells isolated 15 minutes after PEP induction. Ca2+-activated phosphatase calcineurin within the pancreas was tracked in vivo over 24 hours. RESULTS: Intraductal pressures of up to 130 mm Hg were observed in the previously reported model of PEP; we found that application of hydrostatic pressures of 100 and 150 mm Hg for 10 minutes consistently induced pancreatitis. Pancreatic tissues had markers of inflammation (increased levels of interleukin [IL] 6, IL1B, and tumor necrosis factor), activation of signal transducer and activator of transcription 3, increased serum amylase and IL6, and loss of tight junction integrity. Transiently high pressures dysregulated Ca2+ processing (reduced Ca2+ oscillations and an increased peak plateau Ca2+ signal) and reduced the mitochondrial membrane potential. We observed activation of pancreatic calcineurin in the pancreas in mice. Cnab-/- mice, which lack the catalytic subunit of calcineurin, and mice given FK506 did not develop pressure-induced pancreatic inflammation, edema, or loss of tight junction integrity. CONCLUSIONS: Transient high ductal pressure produces pancreatic inflammation and loss of tight junction integrity in a mouse model of PEP. These processes require calcineurin signaling. Calcineurin inhibitors might be used to prevent acute pancreatitis that results from obstruction.


Assuntos
Ampola Hepatopancreática/enzimologia , Calcineurina/metabolismo , Sinalização do Cálcio , Mecanotransdução Celular , Pancreatite/enzimologia , Junções Íntimas/enzimologia , Ampola Hepatopancreática/efeitos dos fármacos , Ampola Hepatopancreática/patologia , Amilases/sangue , Animais , Calcineurina/deficiência , Calcineurina/genética , Inibidores de Calcineurina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Colangiopancreatografia Retrógrada Endoscópica , Modelos Animais de Doenças , Feminino , Pressão Hidrostática , Interleucina-1beta/metabolismo , Interleucina-6/sangue , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial , Camundongos Knockout , Mitocôndrias/metabolismo , Pancreatite/etiologia , Pancreatite/patologia , Pancreatite/prevenção & controle , Fator de Transcrição STAT3/metabolismo , Tacrolimo/farmacologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
5.
Gastroenterology ; 154(6): 1805-1821.e5, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29360461

RESUMO

BACKGROUND & AIMS: Pancreatic acinar cells are polarized epithelial cells that store enzymes required for digestion as inactive zymogens, tightly packed at the cell apex. Stimulation of acinar cells causes the zymogen granules to fuse with the apical membrane, and the cells undergo exocytosis to release proteases into the intestinal lumen. Autophagy maintains homeostasis of pancreatic acini. Syntaxin 2 (STX2), an abundant soluble N-ethyl maleimide sensitive factor attachment protein receptor in pancreatic acini, has been reported to mediate apical exocytosis. Using human pancreatic tissues and STX2-knockout (KO) mice, we investigated the functions of STX2 in zymogen granule-mediated exocytosis and autophagy. METHODS: We obtained pancreatic tissues from 5 patients undergoing surgery for pancreatic cancer and prepared 80-µm slices; tissues were exposed to supramaximal cholecystokinin octapeptide (CCK-8) or ethanol and a low concentration of CCK-8 and analyzed by immunoblot and immunofluorescence analyses. STX2-KO mice and syntaxin 2+/+ C57BL6 mice (controls) were given intraperitoneal injections of supramaximal caerulein (a CCK-8 analogue) or fed ethanol and then given a low dose of caerulein to induce acute pancreatitis, or saline (controls); pancreata were isolated and analyzed by histology and immunohistochemistry. Acini were isolated from mice, incubated with CCK-8, and analyzed by immunofluorescence microscopy or used in immunoprecipitation experiments. Exocytosis was quantified using live-cell exocytosis and Ca2+ imaging analyses and based on formation of exocytotic soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes. Dysregulations in autophagy were identified using markers, electron and immunofluorescence microscopy, and protease activation assays. RESULTS: Human pancreatic tissues and dispersed pancreatic acini from control mice exposed to CCK-8 or ethanol plus CCK-8 were depleted of STX2. STX2-KO developed more severe pancreatitis after administration of supramaximal caerulein or a 6-week ethanol diet compared with control. Acini from STX2-KO mice had increased apical exocytosis after exposure to CCK-8, as well as increased basolateral exocytosis, which led to ectopic release of proteases. These increases in apical and basolateral exocytosis required increased formation of fusogenic soluble N-ethyl maleimide sensitive factor attachment protein receptor complexes, mediated by STX3 and STX4. STX2 bound ATG16L1 and prevented it from binding clathrin. Deletion of STX2 from acini increased binding of AT16L1 to clathrin, increasing formation of pre-autophagosomes and inducing autophagy. Induction of autophagy promoted the CCK-8-induced increase in autolysosome formation and the activation of trypsinogen. CONCLUSIONS: In studies of human pancreatic tissues and pancreata from STX2-KO and control mice, we found STX2 to block STX3- and STX4-mediated fusion of zymogen granules with the plasma membrane and exocytosis and prevent binding of ATG16L1 to clathrin, which contributes to induction of autophagy. Exposure of pancreatic tissues to CCK-8 or ethanol depletes acinar cells of STX2, increasing basolateral exocytosis and promoting autophagy induction, leading to activation of trypsinogen.


Assuntos
Autofagia/genética , Exocitose/genética , Pâncreas/citologia , Pancreatite/genética , Sintaxina 1/metabolismo , Células Acinares/metabolismo , Animais , Membrana Celular/metabolismo , Ceruletídeo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/cirurgia , Pancreatite/induzido quimicamente , Vesículas Secretórias/fisiologia , Tripsinogênio/metabolismo
6.
Sci Rep ; 8(1): 1406, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362419

RESUMO

It is well known that pancreatic recovery after a single episode of injury such as an isolated bout of pancreatitis occurs rapidly. It is unclear, however, what changes are inflicted in such conditions to the molecular landscape of the pancreas. In the caerulein hyperstimulation model of pancreatitis, the murine pancreas has the ability to recover within one week based on histological appearance. In this study, we sought to characterize by RNA-sequencing (RNA-seq) the transcriptional profile of the recovering pancreas up to two weeks post-injury. We found that one week after injury there were 319 differentially expressed genes (DEGs) compared with baseline and that after two weeks there were 53 DEGs. Forty (12.5%) of the DEGs persisted from week one to week two, and another 13 DEGs newly emerged in the second week. Amongst the top up-regulated DEGs were several trypsinogen genes (trypsinogen 4, 5, 12, 15, and 16). To our knowledge, this is the first characterization of the transcriptome during pancreatic recovery by deep sequencing, and it reveals on a molecular basis that there is an ongoing recovery of the pancreas even after apparent histological resolution. The findings also raise the possibility of an emerging novel transcriptome upon pancreatic recovery.


Assuntos
Ceruletídeo/efeitos adversos , Perfilação da Expressão Gênica/métodos , Pancreatite/genética , Regeneração , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Camundongos , Pancreatite/induzido quimicamente , Análise de Sequência de RNA/métodos
7.
J Biol Chem ; 293(7): 2510-2522, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29284677

RESUMO

Epithelial pancreatic acinar cells perform crucial functions in food digestion, and acinar cell homeostasis required for secretion of digestive enzymes relies on SNARE-mediated exocytosis. The ubiquitously expressed Sec1/Munc18 protein mammalian uncoordinated-18c (Munc18c) regulates membrane fusion by activating syntaxin-4 (STX-4) to bind cognate SNARE proteins to form a SNARE complex that mediates exocytosis in many cell types. However, in the acinar cell, Munc18c's functions in exocytosis and homeostasis remain inconclusive. Here, we found that pancreatic acini from Munc18c-depleted mice (Munc18c+/-) and human pancreas (lenti-Munc18c-shRNA-treated) exhibit normal apical exocytosis of zymogen granules (ZGs) in response to physiologic stimulation with the intestinal hormone cholecystokinin (CCK-8). However, when stimulated with supraphysiologic CCK-8 levels to mimic pancreatitis, Munc18c-depleted (Munc18c+/-) mouse acini exhibited a reduction in pathological basolateral exocytosis of ZGs resulting from a decrease in fusogenic STX-4 SNARE complexes. This reduced basolateral exocytosis in part explained the less severe pancreatitis observed in Munc18c+/- mice after hyperstimulation with the CCK-8 analog caerulein. Likely as a result of this secretory blockade, Munc18c-depleted acini unexpectedly activated a component of the endoplasmic reticulum (ER) stress response that contributed to autophagy induction, resulting in downstream accumulation of autophagic vacuoles and autolysosomes. We conclude that Munc18c's role in mediating ectopic basolateral membrane fusion of ZGs contributes to the initiation of CCK-induced pancreatic injury, and that blockade of this secretory process could increase autophagy induction.


Assuntos
Ceruletídeo/efeitos adversos , Proteínas Munc18/metabolismo , Pancreatite/metabolismo , Idoso , Animais , Ceruletídeo/metabolismo , Colecistocinina/efeitos adversos , Colecistocinina/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Exocitose , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Munc18/genética , Pâncreas/metabolismo , Pancreatite/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
8.
Cell Mol Gastroenterol Hepatol ; 3(1): 119-128, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28090570

RESUMO

BACKGROUND AND AIMS: There is a pressing need to develop effective preventative therapies for post-ERCP pancreatitis (PEP). We demonstrated that early PEP events are induced through the calcium-activated phosphatase calcineurin and that global calcineurin deletion abolishes PEP in mice. A crucial question is whether acinar cell calcineurin controls the initiation of PEP in vivo. METHODS: We used a mouse model of PEP and examined the effects of in vivo acinar cell-specific calcineurin deletion by either generating a conditional knockout line or infusing a novel AAV-Ela-iCre into the pancreatic duct of a calcineurin floxed line. RESULTS: We found that PEP is dependent on acinar cell calcineurin in vivo, and this led us to determine that calcineurin inhibitors, infused within the radiocontrast, can largely prevent PEP. CONCLUSIONS: These results provide impetus for launching clinical trials to test the efficacy of intraductal calcineurin inhibitors to prevent PEP.

10.
Am J Pathol ; 185(12): 3304-15, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26476347

RESUMO

The mechanisms by which drugs induce pancreatitis are unknown. A definite cause of pancreatitis is due to the antiepileptic drug valproic acid (VPA). On the basis of three crucial observations-that VPA inhibits histone deacetylases (HDACs), HDACs mediate pancreas development, and aspects of pancreas development are recapitulated during recovery of the pancreas after injury-we hypothesized that VPA does not cause injury on its own, but it predisposes patients to pancreatitis by inhibiting HDACs and provoking an imbalance in pancreatic recovery. In an experimental model of pancreatic injury, we found that VPA delayed recovery of the pancreas and reduced acinar cell proliferation. In addition, pancreatic expression of class I HDACs (which are the primary VPA targets) increased in the midphase of pancreatic recovery. VPA administration inhibited pancreatic HDAC activity and led to the persistence of acinar-to-ductal metaplastic complexes, with prolonged Sox9 expression and sustained ß-catenin nuclear activation, findings that characterize a delay in regenerative reprogramming. These effects were not observed with valpromide, an analog of VPA that lacks HDAC inhibition. This is the first report, to our knowledge, that VPA shifts the balance toward pancreatic injury and pancreatitis through HDAC inhibition. The work also identifies a new paradigm for therapies that could exploit epigenetic reprogramming to enhance pancreatic recovery and disorders of pancreatic injury.


Assuntos
Células Acinares/efeitos dos fármacos , Anticonvulsivantes/toxicidade , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/fisiologia , Pancreatite/induzido quimicamente , Ácido Valproico/toxicidade , Células Acinares/patologia , Animais , Anticonvulsivantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ceruletídeo , Masculino , Camundongos , Pâncreas/fisiologia , Pancreatite/enzimologia , Pancreatite/patologia , Regeneração/efeitos dos fármacos , Regulação para Cima , Ácido Valproico/farmacologia
11.
Gastroenterology ; 149(3): 753-64.e11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25980752

RESUMO

BACKGROUND & AIMS: Radiocontrast agents are required for radiographic procedures, but these agents can injure tissues by unknown mechanisms. We investigated whether exposure of pancreatic tissues to radiocontrast agents during endoscopic retrograde cholangiopancreatography (ERCP) causes pancreatic inflammation, and studied the effects of these agents on human cell lines and in mice. METHODS: We exposed mouse and human acinar cells to the radiocontrast agent iohexol (Omnipaque; GE Healthcare, Princeton, NJ) and measured intracellular release of Ca(2+), calcineurin activation (using a luciferase reporter), activation of nuclear factor-κB (NF-κB, using a luciferase reporter), and cell necrosis (via propidium iodide uptake). We infused the radiocontrast agent into the pancreatic ducts of wild-type mice (C57BL/6) to create a mouse model of post-ERCP pancreatitis; some mice were given intraperitoneal injections of the calcineurin inhibitor FK506 before and after infusion of the radiocontrast agent. CnAß(-/-) mice also were used. This experiment also was performed in mice given infusions of adeno-associated virus 6-NF-κB-luciferase, to assess activation of this transcription factor in vivo. RESULTS: Incubation of mouse and human acinar cells, but not HEK293 or COS7 cells, with iohexol led to a peak and then plateau in Ca(2+) signaling, along with activation of the transcription factors NF-κB and nuclear factor of activated T cells. Suppressing Ca(2+) signaling or calcineurin with BAPTA, cyclosporine A, or FK506 prevented activation of NF-κB and acinar cell injury. Calcineurin Aß-deficient mice were protected against induction of pancreatic inflammation by iohexol. The calcineurin inhibitor FK506 prevented contrast-induced activation of NF-κB in pancreata of mice, this was observed by live imaging of mice given infusions of adeno-associated virus 6-NF-κB-luciferase. CONCLUSIONS: Radiocontrast agents cause pancreatic inflammation in mice, via activation of NF-κB, Ca(2+) signaling, and calcineurin. Calcineurin inhibitors might be developed to prevent post-ERCP pancreatitis in patients.


Assuntos
Calcineurina/metabolismo , Sinalização do Cálcio , Meios de Contraste , Iohexol , NF-kappa B/metabolismo , Pâncreas Exócrino/enzimologia , Pancreatite/enzimologia , Animais , Células COS , Calcineurina/deficiência , Calcineurina/genética , Inibidores de Calcineurina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Chlorocebus aethiops , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , Necrose , Pâncreas Exócrino/efeitos dos fármacos , Pâncreas Exócrino/patologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/patologia , Pancreatite/prevenção & controle , Tacrolimo/farmacologia , Fatores de Tempo
12.
J Biol Chem ; 290(18): 11309-20, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25802340

RESUMO

Nuclear factor κB (NF-κB) is an important signaling molecule that plays a critical role in the development of acute pancreatitis. Current methods for examining NF-κB activation involve infection of an adenoviral NF-κB-luciferase reporter into cell lines or electrophoretic mobility shift assay of lysate. The use of adeno-associated viruses (AAVs) has proven to be an effective method of transfecting whole organs in live animals. We examined whether intrapancreatic duct infusion of AAV containing an NF-κB-luciferase reporter (AAV-NF-κB-luciferase) can reliably measure pancreatic NF-κB activation. We confirmed the infectivity of the AAV-NF-κB-luciferase reporter in HEK293 cells using a traditional luciferase readout. Mice were infused with AAV-NF-κB-luciferase 5 weeks before induction of pancreatitis (caerulein, 50 µg/kg). Unlike transgenic mice that globally express NF-κB-luciferase, AAV-infused mice showed a 15-fold increase in pancreas-specific NF-κB bioluminescence following 12 h of caerulein compared with baseline luminescence (p < 0.05). The specificity of the NF-κB-luciferase signal to the pancreas was confirmed by isolating the pancreas and adjacent organs and observing a predominant bioluminescent signal in the pancreas compared with liver, spleen, and stomach. A complementary mouse model of post-ERCP-pancreatitis also induced pancreatic NF-κB signals. Taken together these data provide the first demonstration that NF-κB activation can be examined in a live, dynamic fashion during pancreatic inflammation. We believe this technique offers a valuable tool to study real-time activation of NF-κB in vivo.


Assuntos
Dependovirus/genética , Medições Luminescentes , Imagem Molecular , NF-kappa B/metabolismo , Pâncreas/metabolismo , Pâncreas/virologia , Animais , Ceruletídeo/metabolismo , Dependovirus/fisiologia , Células HEK293 , Humanos , Luciferases/genética , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , Especificidade de Órgãos , Transdução de Sinais
13.
J Biol Chem ; 288(38): 27128-27137, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23940051

RESUMO

Aberrant Ca(2+) signals within pancreatic acinar cells are an early and critical feature in acute pancreatitis, yet it is unclear how these signals are generated. An important mediator of the aberrant Ca(2+) signals due to bile acid exposure is the intracellular Ca(2+) channel ryanodine receptor. One putative activator of the ryanodine receptor is the nucleotide second messenger cyclic ADP-ribose (cADPR), which is generated by an ectoenzyme ADP-ribosyl cyclase, CD38. In this study, we examined the role of CD38 and cADPR in acinar cell Ca(2+) signals and acinar injury due to bile acids using pharmacologic inhibitors of CD38 and cADPR as well as mice deficient in Cd38 (Cd38(-/-)). Cytosolic Ca(2+) signals were imaged using live time-lapse confocal microscopy in freshly isolated mouse acinar cells during perifusion with the bile acid taurolithocholic acid 3-sulfate (TLCS; 500 µM). To focus on intracellular Ca(2+) release and to specifically exclude Ca(2+) influx, cells were perifused in Ca(2+)-free medium. Cell injury was assessed by lactate dehydrogenase leakage and propidium iodide uptake. Pretreatment with either nicotinamide (20 mM) or the cADPR antagonist 8-Br-cADPR (30 µM) abrogated TLCS-induced Ca(2+) signals and cell injury. TLCS-induced Ca(2+) release and cell injury were reduced by 30 and 95%, respectively, in Cd38-deficient acinar cells compared with wild-type cells (p < 0.05). Cd38-deficient mice were protected against a model of bile acid infusion pancreatitis. In summary, these data indicate that CD38-cADPR mediates bile acid-induced pancreatitis and acinar cell injury through aberrant intracellular Ca(2+) signaling.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Células Acinares/metabolismo , Ácidos e Sais Biliares/toxicidade , Sinalização do Cálcio/efeitos dos fármacos , ADP-Ribose Cíclica/metabolismo , Glicoproteínas de Membrana/metabolismo , Pancreatite/metabolismo , ADP-Ribosil Ciclase 1/genética , Células Acinares/patologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/genética , ADP-Ribose Cíclica/genética , Humanos , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/patologia
14.
J Biol Chem ; 288(29): 21065-21073, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23744075

RESUMO

Biliary pancreatitis is the most common etiology of acute pancreatitis, accounting for 30-60% of cases. A dominant theory for the development of biliary pancreatitis is the reflux of bile into the pancreatic duct and subsequent exposure to pancreatic acinar cells. Bile acids are known to induce aberrant Ca(2+) signals in acinar cells as well as nuclear translocation of NF-κB. In this study, we examined the role of the downstream Ca(2+) target calcineurin on NF-κB translocation. Freshly isolated mouse acinar cells were infected for 24 h with an adenovirus expressing an NF-κB luciferase reporter. The bile acid taurolithocholic acid-3-sulfate caused NF-κB activation at concentrations (500 µm) that were associated with cell injury. We show that the NF-κB inhibitor Bay 11-7082 (1 µm) blocked translocation and injury. Pretreatment with the Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, the calcineurin inhibitors FK506 and cyclosporine A, or use of acinar cells from calcineurin Aß-deficient mice each led to reduced NF-κB activation with taurolithocholic acid-3-sulfate. Importantly, these manipulations did not affect LPS-induced NF-κB activation. A critical upstream regulator of NF-κB activation is protein kinase C, which translocates to the membranes of various organelles in the active state. We demonstrate that pharmacologic and genetic inhibition of calcineurin blocks translocation of the PKC-δ isoform. In summary, bile-induced NF-κB activation and acinar cell injury are mediated by calcineurin, and a mechanism for this important early inflammatory response appears to be upstream at the level of PKC translocation.


Assuntos
Células Acinares/metabolismo , Ácidos e Sais Biliares/farmacologia , Calcineurina/metabolismo , NF-kappa B/metabolismo , Pâncreas/patologia , Células Acinares/efeitos dos fármacos , Células Acinares/patologia , Animais , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Modelos Biológicos , Proteína Quinase C-delta/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Ácido Taurolitocólico/análogos & derivados , Ácido Taurolitocólico/farmacologia
15.
J Biol Chem ; 288(1): 570-80, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23148215

RESUMO

Biliary pancreatitis is the leading cause of acute pancreatitis in both children and adults. A proposed mechanism is the reflux of bile into the pancreatic duct. Bile acid exposure causes pancreatic acinar cell injury through a sustained rise in cytosolic Ca(2+). Thus, it would be clinically relevant to know the targets of this aberrant Ca(2+) signal. We hypothesized that the Ca(2+)-activated phosphatase calcineurin is such a Ca(2+) target. To examine calcineurin activation, we infected primary acinar cells from mice with an adenovirus expressing the promoter for a downstream calcineurin effector, nuclear factor of activated T-cells (NFAT). The bile acid taurolithocholic acid-3-sulfate (TLCS) was primarily used to examine bile acid responses. TLCS caused calcineurin activation only at concentrations that cause acinar cell injury. The activation of calcineurin by TLCS was abolished by chelating intracellular Ca(2+). Pretreatment with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (acetoxymethyl ester) (BAPTA-AM) or the three specific calcineurin inhibitors FK506, cyclosporine A, or calcineurin inhibitory peptide prevented bile acid-induced acinar cell injury as measured by lactate dehydrogenase leakage and propidium iodide uptake. The calcineurin inhibitors reduced the intra-acinar activation of chymotrypsinogen within 30 min of TLCS administration, and they also prevented NF-κB activation. In vivo, mice that received FK506 or were deficient in the calcineurin isoform Aß (CnAß) subunit had reduced pancreatitis severity after infusion of TLCS or taurocholic acid into the pancreatic duct. In summary, we demonstrate that acinar cell calcineurin is activated in response to Ca(2+) generated by bile acid exposure, bile acid-induced pancreatic injury is dependent on calcineurin activation, and calcineurin inhibitors may provide an adjunctive therapy for biliary pancreatitis.


Assuntos
Células Acinares/citologia , Ácidos e Sais Biliares/química , Calcineurina/metabolismo , Cálcio/química , Citosol/metabolismo , Pâncreas/metabolismo , Pancreatite/metabolismo , Células Acinares/metabolismo , Animais , Cálcio/metabolismo , Quimotripsina/química , Ácido Egtázico/análogos & derivados , Ácido Egtázico/química , L-Lactato Desidrogenase/metabolismo , Camundongos , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Isoformas de Proteínas , Tacrolimo/farmacologia , Ácido Taurolitocólico/análogos & derivados , Ácido Taurolitocólico/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...