Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 207: 324-332, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259435

RESUMO

The recently developed technologies for immobilization of cellulase may address the challenges in costly hydrolysis of cellulose for cellulosic butanol production. In this study, a "hybrid" hydrolysis was developed based on chemical hydrolysis of cellulose to its oligomers followed by enzymatic post-hydrolysis of the resulting "soluble oligomers" by cellulase immobilized on chitosan-coated Fe3O4 nanoparticles. This hybrid hydrolysis stage was utilized in the process of biobutanol production from a waste textile, jeans waste, leading to selective formation of glucose and high yield of butanol production by Clostridium acetobutylicum. After validating the immobilization process, the optimum immobilization parameters including enzyme concentration and time were achieved on 8 h and 15.0 mg/mL, respectively. The reusability of immobilized enzyme showed that immobilized cellulase could retain 51.5% of its initial activity after three times reuses. Dilute acid hydrolysis of regenerated cellulose at 120-180 °C for 60 min 0.5-1.0% phosphoric acid led to less than 10 g/L glucose production, and enzymatic post-hydrolysis of the oligomers resulted in up to 51.5 g/L glucose. Fermentation of the hydrolysate was accompanied by 5.3 g/L acetone-butanol-ethanol (ABE) production. The simultaneous co-saccharification and fermentation (SCSF) of soluble and insoluble oligomers of cellulose led to 17.4 g/L ABE production.


Assuntos
Celulase , Quitosana , Clostridium acetobutylicum , Nanopartículas de Magnetita , 1-Butanol , Acetona , Butanóis , Celulase/metabolismo , Celulose/metabolismo , Clostridium acetobutylicum/metabolismo , Etanol , Fermentação , Glucose , Hidrólise , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...