Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 159: 109095, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32250769

RESUMO

Activation cross sections of the deuteron-induced reactions on natural zinc are studied for the production of the medical radionuclide 68Ga. The stacked foil activation method and the γ-ray spectrometry were used. Co-produced radionuclides 65,66,67Ga, 63,65,69mZn, 61Cu, and 58Co are also investigated to evaluate amounts of impurities for practical use of 68Ga. Physical yields of the radionuclides were deduced from the measured cross sections.

2.
Biochim Biophys Acta Proteins Proteom ; 1866(7): 789-798, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29337209

RESUMO

Bombinin H4 is an antimicrobial peptide that was isolated from the toad Bombina variegata. Bombinin H family peptides are active against gram-positive, gram-negative bacteria, and fungi as well as the parasite Leishmania. Among them, bombinin H4 (H4), which contains d-allo-isoleucine (d-allo-Ile) as the second residue in its sequence, is the most active, and its l-isomer is bombinin H2 (H2). H4 has a significantly lower LC50 than H2 against Leishmania. However, the atomic-level mechanism of the membrane interaction and higher activity of H4 has not been clarified. In this work, we investigated the behavior of the conformations and interactions of H2 and H4 with the Leishmania membrane using 31P solid-state nuclear magnetic resonance (NMR), vibrational circular dichroism (VCD) spectroscopy, and molecular dynamics (MD) simulations. The generation of isotropic 31P NMR signals depending on the peptide concentration indicated the abilities of H2 and H4 to exert antimicrobial activity via membrane disruption. The VCD experiment and density functional theory calculation confirmed the different stability and conformations of the N-termini of H2 and H4. MD simulations revealed that the N-terminus of H4 is more stable than that of H2 in the membrane, in line with the VCD experiment data. VCD and MD analyses demonstrated that the first l-Ile and second d-allo-Ile of H4 tend to take a cis conformation. These residues function as an anchor and facilitate the easy winding of the helical conformation of H4 in the membrane. It may assist to quickly reach to the threshold concentration of H4 on the Leishmania membrane. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Antiprotozoários/química , Dicroísmo Circular/métodos , Isoleucina/química , Leishmania/efeitos dos fármacos , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Conformação Molecular
3.
J Phys Chem B ; 121(8): 1802-1811, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28165239

RESUMO

Melittin is a venom peptide that disrupts lipid bilayers at temperatures below the liquid-crystalline to gel phase transition temperature (Tc). Notably, the ability of melittin to disrupt acidic dimyristoylphosphatidylglycerol (DMPG) bilayers was weaker than its ability to disrupt neutral dimyristoylphosphatidylcholine bilayers. The structure and orientation of melittin bound to DMPG bilayers were revealed by analyzing the 13C chemical shift anisotropy of [1-13C]-labeled melittin obtained from solid-state 13C NMR spectra. 13C chemical shift anisotropy showed oscillatory shifts with the index number of residues. Analysis of the chemical shift oscillation properties indicated that melittin bound to a DMPG membrane adopts a bent α-helical structure with tilt angles for the N- and C-terminal helices of -32 and +30°, respectively. The transmembrane melittin in DMPG bilayers indicates that the peptide protrudes toward the C-terminal direction from the core region of the lipid bilayer to show a pseudotransmembrane bent α-helix. Molecular dynamics simulation was performed to characterize the structure and interaction of melittin with lipid molecules in DMPG bilayers. The simulation results indicate that basic amino acid residues in melittin interact strongly with lipid head groups to generate a pseudo-transmembrane alignment. The N-terminus is located within the lipid core region and disturbs the lower surface of the lipid bilayer.


Assuntos
Abelhas/química , Bicamadas Lipídicas/química , Meliteno/química , Fosfatidilgliceróis/química , Sequência de Aminoácidos , Animais , Anisotropia , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína
4.
Biochim Biophys Acta ; 1848(11 Pt A): 2789-98, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26248014

RESUMO

The structure, topology and orientation of membrane-bound antibiotic alamethicin were studied using solid state nuclear magnetic resonance (NMR) spectroscopy. (13)C chemical shift interaction was observed in [1-(13)C]-labeled alamethicin. The isotropic chemical shift values indicated that alamethicin forms a helical structure in the entire region. The chemical shift anisotropy of the carbonyl carbon of isotopically labeled alamethicin was also analyzed with the assumption that alamethicin molecules rotate rapidly about the bilayer normal of the phospholipid bilayers. It is considered that the adjacent peptide planes form an angle of 100° or 120° when it forms α-helix or 310-helix, respectively. These properties lead to an oscillation of the chemical shift anisotropy with respect to the phase angle of the peptide plane. Anisotropic data were acquired for the 4 and 7 sites of the N- and C-termini, respectively. The results indicated that the helical axes for the N- and C-termini were tilted 17° and 32° to the bilayer normal, respectively. The chemical shift oscillation curves indicate that the N- and C-termini form the α-helix and 310-helix, respectively. The C-terminal 310-helix of alamethicin in the bilayer was experimentally observed and the unique bending structure of alamethicin was further confirmed by measuring the internuclear distances of [1-(13)C] and [(15)N] doubly-labeled alamethicin. Molecular dynamics simulation of alamethicin embedded into dimyristoyl phophatidylcholine (DMPC) bilayers indicates that the helical axes for α-helical N- and 310-helical C-termini are tilted 12° and 32° to the bilayer normal, respectively, which is in good agreement with the solid state NMR results.


Assuntos
Alameticina/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Fosfolipídeos/química , Alameticina/metabolismo , Sequência de Aminoácidos , Anisotropia , Antibacterianos/química , Antibacterianos/metabolismo , Isótopos de Carbono , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Bicamadas Lipídicas/metabolismo , Dados de Sequência Molecular , Isótopos de Nitrogênio , Fosfolipídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína
5.
J Phys Chem B ; 118(32): 9604-12, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25059685

RESUMO

κ-Opioid receptor is a member of the opioid receptor family and selectively interacts with the opioid peptide dynorphin. Extracellular loop II (ECL-II) of the κ-opioid receptor displays an amphiphilic helix in membrane environments and the N-terminal α-helix of dynorphin A(1-17) (hereafter DynA17) is inserted into the membrane with the tilt angle of 21° to the bilayer normal. ECL-II peptides (1-33), corresponding to 196-228 of κ-opioid receptor with [1-(13)C]- or [3-(13)C]-labeled amino acids were incorporated into large [dimyristoylphosphatidyl choline (DMPC)/ dihexanoylphosphatidyl choline (DHPC) = 3, q = 3] and small bicelle (q = 1) systems. (13)C direct detection with dipolar decoupling and magic angle spinning (DD-MAS) nuclear magnetic resonance (NMR) spectra were recorded, and the (13)C chemical shift perturbation clearly indicated that DynA17 interacts with ECL-II at the location of Val10-Ala15. Quartz crystal microbalance measurements were performed to determine the binding constant of ECL-II with DynA17 and indicated that the binding constant between DynA17 and ECL-II embedded in the lipid layer was 72 times larger than that between DynA17 and the lipid. The result of the molecular dynamics simulation clearly indicates that the C-terminus of DynA17 interact with the amino acid residues of the region between Val10-Gln14 of ECL-II. These results suggest that DynA17 interacts with the ECL-II of the κ-opioid receptor through a hydrophobic and short-lived electrostatic interaction with high affinity in the outer surface of the membrane.


Assuntos
Membrana Celular/química , Dinorfinas/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Técnicas de Microbalança de Cristal de Quartzo , Receptores Opioides kappa/química , Humanos
6.
Int J Nanomedicine ; 8: 2487-96, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874096

RESUMO

Having a theoretical understanding of the orientation of immunoglobulin on an immobilized solid surface is important in biomedical pathogen-detecting systems and cellular analysis. Despite the stable adsorption of immunoglobulin on a polystyrene (PS) surface that has been applied in many kinds of immunoassays, there are many uncertainties in antibody-based clinical and biological experimental methods. To understand the binding mechanism and physicochemical interactions between immunoglobulin and the PS surface at the atomic level, we investigated the binding behavior and interactions of the monoclonal immunoglobulin G (IgG) on the PS surface using the computational method. In our docking simulation with the different arrangement of translational and rotational orientation of IgG onto the PS surface, three typical orientation patterns of the immunoglobulin G on the PS surface were found. We precisely analyzed these orientation patterns and clarified how the immunoglobulin G interacts with the PS surface at atomic scale in the beginning of the adsorption process. Major driving forces for the adsorption of IgG onto the PS surface come from serine (Ser), aspartic acid (Asp), and glutamic acid (Glu) residues.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , Simulação de Acoplamento Molecular , Poliestirenos/química , Adsorção , Aminoácidos/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Simulação de Dinâmica Molecular , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Poliestirenos/metabolismo , Ligação Proteica
7.
Phys Chem Chem Phys ; 15(23): 8890-901, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23552643

RESUMO

Calcitonin (CT) is an amyloid fibril forming peptide. Since salmon calcitonin (sCT), having Leu residues (Leu12, Leu16 or Leu19) instead of Tyr12, Phe16 or Phe19 for human calcitonin (hCT), is known to form the fibrils much slower than hCT, hCTs mutated to Leu residues at the position of 16 (F16L-hCT), 19 (F19L-hCT), and 12, 16 and 19 (TL-hCT) were examined to reveal the role of aromatic side-chains on amyloid fibrillation using solid-state (13)C NMR. The detailed kinetics were analyzed using a two-step reaction mechanism such as nucleation and fibril elongation with the rate constants of k1 and k2, respectively. The k2 values of hCT mutants were significantly slower than that of hCT at a neutral pH, although they were almost the same at an acidic pH. The (13)C chemical shifts of the labeled sites showed that the conformations of monomeric hCT mutants take α-helices as viewed from the Gly10 moiety. The hCT mutants formed fibrils and during the fibril formation, the α-helix around Gly10-Phe22 changed to the ß-sheet, and the major structures around Ala26-Ala31 were random coil in the fibrils. Molecular dynamics simulation was performed for the ß-sheet system of hCT9-23 and its mutants F16L-hCT9-23, F19L-hCT9-23 and TL-hCT9-23. In one of the stable fibril structures, Phe16 of hCT interacts with Phe19 of the next strand alternatively. In the hCT mutants, lack of Phe16 and Phe19 interaction causes significant instability as compared with the hCT fibril, leading to the reduction of k2 values, as observed experimentally in the hCT mutants at a neutral pH.


Assuntos
Amiloide/química , Amiloide/metabolismo , Calcitonina/química , Calcitonina/metabolismo , Amiloide/genética , Amiloide/ultraestrutura , Calcitonina/genética , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Mutação Puntual , Estrutura Secundária de Proteína
8.
Biophys J ; 103(8): 1735-43, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23083717

RESUMO

Bovine lactoferrampin (LFampinB) is a newly discovered antimicrobial peptide found in the N1-domain of bovine lactoferrin (268-284), and consists of 17 amino-acid residues. It is important to determine the orientation and structure of LFampinB in bacterial membranes to reveal the antimicrobial mechanism. We therefore performed (13)C and (31)P NMR, (13)C-(31)P rotational echo double resonance (REDOR), potassium ion-selective electrode, and quartz-crystal microbalance measurements for LFampinB with mimetic bacterial membrane and molecular-dynamics simulation in acidic membrane. (31)P NMR results indicated that LFampinB caused a defect in mimetic bacterial membranes. Ion-selective electrode measurements showed that ion leakage occurred for the mimetic bacterial membrane containing cardiolipin. Quartz-crystal microbalance measurements revealed that LFampinB had greater affinity to acidic phospholipids than that to neutral phospholipids. (13)C DD-MAS and static NMR spectra showed that LFampinB formed an α-helix in the N-terminus region and tilted 45° to the bilayer normal. REDOR dephasing patterns between carbonyl carbon nucleus in LFampinB and phosphorus nuclei in lipid phosphate groups were measured by (13)C-(31)P REDOR and the results revealed that LFampinB is located in the interfacial region of the membrane. Molecular-dynamics simulation showed the tilt angle to be 42° and the rotation angle to be 92.5° for Leu(3), which are in excellent agreement with the experimental values.


Assuntos
Lactoferrina/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Lipossomas Unilamelares/química , Motivos de Aminoácidos , Cardiolipinas/química , Eletrodos Seletivos de Íons
9.
Biophys J ; 101(5): 1212-20, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21889459

RESUMO

The orientation behavior of Bombolitin II (BLT2) in the dipalmitoylphosphatidylcholine membrane bilayer was investigated by using molecular-dynamics simulation. During the 20-ns simulation, the BLT2 began to tilt and finally reached the angle of 51° from the membrane-normal. The structure of the peptide formed the amphipathic α-helical structure during the entire simulation time. The peptide tilts with its hydrophobic side faced to the hydrophobic core of the bilayer. We analyzed the mechanism of the tilting behavior of the peptide associated with the membrane in detail. The analysis showed that the hydrogen-bond interaction and the electrostatic interaction were found to exist between Lys(12) and a lipid molecule. These interactions are considered to work as an important factor in tilting the peptide to the membrane-normal.


Assuntos
Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Movimento , Conformação Proteica
10.
Biophys J ; 99(10): 3282-9, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21081076

RESUMO

Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes were determined by solid-state (31)P and (13)C NMR spectroscopy. (31)P NMR spectra showed that BLT2-DPPC membranes were disrupted into small particles below the gel-to-liquid crystalline phase transition temperature (T(c)) and fused to form a magnetically oriented vesicle system where the membrane surface is parallel to the magnetic fields above the T(c). (13)C NMR spectra of site-specifically (13)C-labeled BLT2 at the carbonyl carbons were observed and the chemical shift anisotropies were analyzed to determine the dynamic structure of BLT2 bound to the magnetically oriented vesicle system. It was revealed that the membrane-bound BLT2 adopted an α-helical structure, rotating around the membrane normal with the tilt angle of the helical axis at 33°. Interatomic distances obtained from rotational-echo double-resonance experiments further showed that BLT2 adopted a straight α-helical structure. Molecular dynamics simulation performed in the BLT2-DPPC membrane system showed that the BLT2 formed a straight α-helix and that the C-terminus was inserted into the membrane. The α-helical axis is tilted 30° to the membrane normal, which is almost the same as the value obtained from solid-state NMR. These results suggest that the membrane disruption induced by BLT2 is attributed to insertion of BLT2 into the lipid bilayers.


Assuntos
Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Sequência de Aminoácidos , Animais , Abelhas , Carbono , Liofilização , Espectroscopia de Ressonância Magnética , Magnetismo , Dados de Sequência Molecular , Ligação Proteica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...