Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 52(3): 596-609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36746193

RESUMO

Canada's livestock production and human populations are concentrated in southern regions. Understanding spatial and temporal distributions of animals and excreted nutrients is key to optimizing manure resources and minimizing impact of livestock. Here, we identify manureshed concerns and opportunities by reconciling nitrogen supply and demand on a regional and national scale. Data based on national statistics and farm surveys were allocated to homogeneous soil polygons (Soil Landscapes of Canada [SLC]) to quantify changes in nutrient distribution and ammonia (NH3 ) emissions across Canada (1981-2018). Livestock sectors tied to domestic consumption, dairy and poultry, were stable over time and well dispersed. Export driven beef production has moved west since 1981, whereas pig production was prominent in Manitoba, Quebec, and Ontario. Per ha manure N excretion across livestock sectors in 2018 was generally low with 58% and 6% of the SLCs averaging <25 and >100 kg N ha-1 , respectively. Although only 3% of SLCs had average NH3 emissions reaching 16-200 kg ha-1 , most of these were located near cities and emissions spiked in spring when more people might be exposed. The greatest concentrations of nutrients and livestock occurred around the three largest metropolitan areas: Toronto, Montreal-Quebec City, and Vancouver, posing challenges for nutrient recycling and public health. This study shows that as Canadian cities and livestock agriculture grow in southern Canada, so will challenges around food production, human health, and managing nutrients. Livestock and land use strategies are needed to reconcile changing animal sectors and growing populations.


Assuntos
Gado , Esterco , Bovinos , Animais , Suínos , Humanos , Canadá , Solo , Agricultura , Nitrogênio/análise
2.
Ecol Lett ; 16(5): 584-99, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23489285

RESUMO

Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local-scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high-quality habitats; bee richness on conventional fields with low diversity benefited most from high-quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high-quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.


Assuntos
Agricultura , Abelhas/fisiologia , Ecossistema , Modelos Teóricos , Polinização , Animais , Clima , Produtos Agrícolas , Flores , Densidade Demográfica
3.
Science ; 339(6127): 1608-11, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23449997

RESUMO

The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Insetos/fisiologia , Polinização , Animais , Abelhas/fisiologia , Flores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...