Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Life Sci ; 18(1): 20220764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027230

RESUMO

In the rapidly evolving landscape of agricultural technology, image processing has emerged as a powerful tool for addressing critical agricultural challenges, with a particular focus on the identification and management of crop diseases. This study is motivated by the imperative need to enhance agricultural sustainability and productivity through precise plant health monitoring. Our primary objective is to propose an innovative approach combining support vector machine (SVM) with advanced image processing techniques to achieve precise detection and classification of fig leaf diseases. Our methodology encompasses a step-by-step process, beginning with the acquisition of digital color images of diseased leaves, followed by denoising using the mean function and enhancement through Contrast-limited adaptive histogram equalization. The subsequent stages involve segmentation through the Fuzzy C Means algorithm, feature extraction via Principal Component Analysis, and disease classification, employing Particle Swarm Optimization (PSO) in conjunction with SVM, Backpropagation Neural Network, and Random Forest algorithms. The results of our study showcase the exceptional performance of the PSO SVM algorithm in accurately classifying and detecting fig leaf disease, demonstrating its potential for practical implementation in agriculture. This innovative approach not only underscores the significance of advanced image processing techniques but also highlights their substantial contributions to sustainable agriculture and plant disease mitigation. In conclusion, the integration of image processing and SVM-based classification offers a promising avenue for advancing crop disease management, ultimately bolstering agricultural productivity and global food security.

2.
Biomed Res Int ; 2022: 1755460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046454

RESUMO

Lung cancer is a potentially lethal illness. Cancer detection continues to be a challenge for medical professionals. The true cause of cancer and its complete treatment have still not been discovered. Cancer that is caught early enough can be treated. Image processing methods such as noise reduction, feature extraction, identification of damaged regions, and maybe a comparison with data on the medical history of lung cancer are used to locate portions of the lung that have been impacted by cancer. This research shows an accurate classification and prediction of lung cancer using technology that is enabled by machine learning and image processing. To begin, photos need to be gathered. In the experimental investigation, 83 CT scans from 70 distinct patients were utilized as the dataset. The geometric mean filter is used during picture preprocessing. As a consequence, image quality is enhanced. The K-means technique is then used to segment the images. The part of the image may be found using this segmentation. Then, classification methods using machine learning are used. For the classification, ANN, KNN, and RF are some of the machine learning techniques that were used. It is found that the ANN model is producing more accurate results for predicting lung cancer.


Assuntos
Algoritmos , Neoplasias Pulmonares , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...