Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Terahertz Sci Technol ; 13(4): 354-361, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37409025

RESUMO

The reflectance (R) and transmittance (T) of Si and GaAs wafers irradiated by a 6 ns pulsed, 532 nm laser have been studied for s- and p-polarized 250 GHz radiation as a function of laser fluence and time. The measurements were carried out using precision timing of the R and T signals, allowing an accurate determination of the absorptance (A) where A=1-R-T. Both wafers had a maximum reflectance above 90% for a laser fluence ≥8 mJ/cm2. Both also showed an absorptance peak of ~50% lasting ~2 ns during the risetime of the laser pulse. Experimental results were compared with a stratified medium theory using the Vogel model for the carrier lifetime and the Drude model for permittivity. Modeling showed that the large absorptance at the early part of the rise of the laser pulse was due to the creation of a lossy, low carrier density layer. For Si, the measured R, T and A were in very good agreement with theory on both the nanosecond time scale and the microsecond scale. For GaAs, the agreement was very good on the nanosecond scale but only qualitatively correct on the microsecond scale. These results may be useful for planning applications of laser driven semiconductor switches.

2.
J Magn Reson ; 353: 107511, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37385067

RESUMO

Dynamic nuclear polarization (DNP) improves the sensitivity of NMR spectroscopy by the transfer of electron polarization to nuclei via irradiation of electron-nuclear transitions with microwaves at the appropriate frequency. For fields > 5 T and using g ∼ 2 electrons as polarizing agents, this requires the availability of microwave sources operating at >140 GHz. Therefore, microwave sources for DNP have generally been continuous-wave (CW) gyrotrons, and more recently solid state, oscillators operating at a fixed frequency and power. This constraint has limited the DNP mechanisms which can be exploited, and stymied the development of new time domain mechanisms. We report here the incorporation of a microwave source enabling facile modulation of frequency, amplitude, and phase at 9 T (250 GHz microwave frequency), and we have used the source for magic-angle spinning (MAS) NMR experiments. The experiments include investigations of CW DNP mechanisms, the advantage of frequency-chirped irradiation, and a demonstration of an Overhauser enhancement of ∼25 with a recently reported water-soluble BDPA radical, highlighting the potential for affordable and compact microwave sources to achieve significant enhancement in aqueous samples, including biological macromolecules. With the development of suitable microwave amplifiers, it should permit exploration of multiple new avenues involving time domain experiments.

3.
J Infrared Millim Terahertz Waves ; 42(1): 29-39, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33574964

RESUMO

The phase stability of a 140GHz, 1kW pulsed gyro-amplifier system and the phase dependence on the cathode voltage were experimentally measured. To optimize the measurement precision, the amplifier was operated at 47 kV and 1 A, where the output power was ∼ 30W. The phase was determined to be stable both pulse-to-pulse and during each pulse, so far as the cathode voltage and electron beam current are constant. The phase variation with voltage was measured and found to be 130±30°/kV, in excellent agreement with simulations. The electron gun used in this device is non-adiabatic, resulting in a steep slope of the beam pitch factor with respect to cathode voltage. This was discovered to be the dominant factor in the phase dependence on voltage. The use of an adiabatic electron gun is predicted to yield a significantly smaller phase sensitivity to voltage, and thus a more phase-stable performance. To our knowledge, these are the first phase measurements reported for a gyro-amplifier operating at a frequency above W-band.

4.
IEEE Trans Electron Devices ; 67(1): 328-334, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32099264

RESUMO

We report the design and experimental demonstration of a frequency tunable terahertz gyrotron at 527 GHz built for an 800 MHz Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance (DNP-NMR) spectrometer. The gyrotron is designed at the second harmonic (ω = 2ω c) of the electron cyclotron frequency. It produces up to 9.3 W continuous microwave (CW) power at 527.2 GHz frequency using a diode type electron gun operating at V = 16.65 kV, Ib = 110 mA in a TE11,2,1 mode, corresponding to an efficiency of ~0.5%. The gyrotron is tunable within ~ 0.4 GHz by combining voltage and magnetic field tuning. The gyrotron has an internal mode converter that produces a Gaussian-like beam that couples to the HE11 mode of an internal 12 mm i.d. corrugated waveguide periscope assembly leading up to the output window. An external corrugated waveguide transmission line system is built including a corrugated taper from 12 mm to 16 mm i.d. waveguide followed by 3 m of the 16 mm i.d. waveguide The microwave beam profile is measured using a pyroelectric camera showing ~ 84% HE11 mode content.

5.
J Magn Reson ; 307: 106573, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31505305

RESUMO

We describe the design and construction of a modular, triple-resonance, fully balanced, DNP-MAS probe based on transmission line technology and its integration into a 500 MHz/330 GHz DNP-NMR spectrometer. A novel quantitative probe design and characterization strategy is developed and employed to achieve optimal sensitivity, RF homogeneity and excellent isolation between channels. The resulting three channel HCN probe has a modular design with each individual, swappable module being equipped with connectorized, transmission line ports. This strategy permits attachment of a mating connector that facilitates accurate impedance measurements at these ports and allows characterization and adjustment (e.g. for balancing or tuning/matching) of each component individually. The RF performance of the probe is excellent; for example, the 13C channel attains a Rabi frequency of 280 kHz for a 3.2 mm rotor. In addition, a frequency tunable 330 GHz gyrotron operating at the second harmonic of the electron cyclotron frequency was developed for DNP applications. Careful alignment of the corrugated waveguide led to minimal loss of the microwave power, and an enhancement factor ε = 180 was achieved for U-13C urea in the glassy matrix at 80 K. We demonstrated the operation of the system with acquisition of multidimensional spectra of cross-linked lysozyme crystals which are insoluble in glycerol-water mixtures used for DNP and samples of RNA.


Assuntos
Ressonância Magnética Nuclear Biomolecular/instrumentação , Ciclotrons , Impedância Elétrica , Desenho de Equipamento , Indicadores e Reagentes , Micro-Ondas , Muramidase/química , RNA/química , Ureia/química
6.
Appl Phys Lett ; 111(23): 233504, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29249833

RESUMO

We report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.

7.
Artigo em Inglês | MEDLINE | ID: mdl-29033474

RESUMO

The design and experimental results of a 140 GHz gyro-amplifier that uses a dielectric-loaded, sever-less confocal waveguide are presented. The gyro-traveling wave amplifier uses the HE06 mode of a confocal geometry with power coupled in and out of the structure with Vlasov-type, quasi-optical couplers. Dielectric loading attached to the side of the confocal structure suppresses unwanted modes allowing zero-drive stable operation at 48 kV and 3A of beam current. The confocal gyro-amplifier demonstrated a peak circuit gain of 35 dB, a bandwidth of 1.2 GHz and a peak output power of 550 W at 140.0 GHz.

8.
J Phys Chem B ; 121(34): 8132-8141, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28762740

RESUMO

A principal advantage of magic angle spinning (MAS) NMR spectroscopy lies in its ability to determine molecular structure in a noninvasive and quantitative manner. Accordingly, MAS should be widely applicable to studies of the structure of active pharmaceutical ingredients (API) and formulations. However, the low sensitivity encountered in spectroscopy of natural abundance APIs present at low concentration has limited the success of MAS experiments. Dynamic nuclear polarization (DNP) enhances NMR sensitivity and can be used to circumvent this problem provided that suitable paramagnetic polarizing agent can be incorporated into the system without altering the integrity of solid dosages. Here, we demonstrate that DNP polarizing agents can be added in situ during the preparation of amorphous solid dispersions (ASDs) via spray drying and hot-melt extrusion so that ASDs can be examined during drug development. Specifically, the dependence of DNP enhancement on sample composition, radical concentration, relaxation properties of the API and excipients, types of polarizing agents and proton density, has been thoroughly investigated. Optimal enhancement values are obtained from ASDs containing 1% w/w radical concentration. Both polarizing agents TOTAPOL and AMUPol provided reasonable enhancements. Partial deuteration of the excipient produced 3× higher enhancement values. With these parameters, an ASD containing posaconazole and vinyl acetate yields a 32-fold enhancement which presumably results in a reduction of NMR measurement time by ∼1000. This boost in signal intensity enables the full assignment of the natural abundance pharmaceutical formulation through multidimensional correlation experiments.


Assuntos
Espectroscopia de Ressonância Magnética , Preparações Farmacêuticas/química , Clotrimazol/química , Óxidos N-Cíclicos/química , Composição de Medicamentos , Propanóis/química , Prótons , Triazóis/química
9.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc ; 42(10): 3358-3364, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25821260

RESUMO

We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE11 mode, with <8% of the power in high-order modes.

10.
Acc Chem Res ; 46(9): 1933-41, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23597038

RESUMO

During the three decades 1980-2010, magic angle spinning (MAS) NMR developed into the method of choice to examine many chemical, physical, and biological problems. In particular, a variety of dipolar recoupling methods to measure distances and torsion angles can now constrain molecular structures to high resolution. However, applications are often limited by the low sensitivity of the experiments, due in large part to the necessity of observing spectra of low-γ nuclei such as the I = 1/2 species (13)C or (15)N. The difficulty is still greater when quadrupolar nuclei, such as (17)O or (27)Al, are involved. This problem has stimulated efforts to increase the sensitivity of MAS experiments. A particularly powerful approach is dynamic nuclear polarization (DNP) which takes advantage of the higher equilibrium polarization of electrons (which conventionally manifests in the great sensitivity advantage of EPR over NMR). In DNP, the sample is doped with a stable paramagnetic polarizing agent and irradiated with microwaves to transfer the high polarization in the electron spin reservoir to the nuclei of interest. The idea was first explored by Overhauser and Slichter in 1953. However, these experiments were carried out on static samples, at magnetic fields that are low by current standards. To be implemented in contemporary MAS NMR experiments, DNP requires microwave sources operating in the subterahertz regime, roughly 150-660 GHz, and cryogenic MAS probes. In addition, improvements were required in the polarizing agents, because the high concentrations of conventional radicals that are required to produce significant enhancements compromise spectral resolution. In the last two decades, scientific and technical advances have addressed these problems and brought DNP to the point where it is achieving wide applicability. These advances include the development of high frequency gyrotron microwave sources operating in the subterahertz frequency range. In addition, low temperature MAS probes were developed that permit in situ microwave irradiation of the samples. And, finally, biradical polarizing agents were developed that increased the efficiency of DNP experiments by factors of ∼4 at considerably lower paramagnet concentrations. Collectively, these developments have made it possible to apply DNP on a routine basis to a number of different scientific endeavors, most prominently in the biological and material sciences. This Account reviews these developments, including the primary mechanisms used to transfer polarization in high frequency DNP, and the current choice of microwave sources and biradical polarizing agents. In addition, we illustrate the utility of the technique with a description of applications to membrane and amyloid proteins that emphasizes the unique structural information that is available in these two cases.


Assuntos
Espectroscopia de Ressonância Magnética , Compostos Alílicos/química , Óxidos N-Cíclicos/química , Propanóis/química , Compostos de Tritil/química
11.
J Infrared Millim Terahertz Waves ; 34(1): 42-52, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23539422

RESUMO

In this paper, we describe the design and experimental results from the rebuild of a 250 GHz gyrotron used for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance spectroscopy on a 380 MHz spectrometer. Tuning bandwidth of approximately 2 GHz is easily achieved at a fixed magnetic field of 9.24 T and a beam current of 95 mA producing an average output power of >10 W over the entire tuning band. This tube incorporates a double disk output sapphire window in order to maximize the transmission at 250.58 GHz. DNP Signal enhancement of >125 is achieved on a 13C-Urea sample using this gyrotron.

12.
J Infrared Millim Terahertz Waves ; 33(7): 695-714, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23162673

RESUMO

Applications of high-power Terahertz (THz) sources require low-loss transmission lines to minimize loss, prevent overheating and preserve the purity of the transmission mode. Concepts for THz transmission lines are reviewed with special emphasis on overmoded, metallic, corrugated transmission lines. Using the fundamental HE(11) mode, these transmission lines have been successfully implemented with very low-loss at high average power levels on plasma heating experiments and THz dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) experiments. Loss in these lines occurs directly, due to ohmic loss in the fundamental mode, and indirectly, due to mode conversion into high order modes whose ohmic loss increases as the square of the mode index. An analytic expression is derived for ohmic loss in the modes of a corrugated, metallic waveguide, including loss on both the waveguide inner surfaces and grooves. Simulations of loss with the numerical code HFSS are in good agreement with the analytic expression. Experimental tests were conducted to determine the loss of the HE(11) mode in a 19 mm diameter, helically-tapped, three meter long brass waveguide with a design frequency of 330 GHz. The measured loss at 250 GHz was 0.029 ± 0.009 dB/m using a vector network analyzer approach and 0.047 ± 0.01 dB/m using a radiometer. The experimental results are in reasonable agreement with theory. These values of loss, amounting to about 1% or less per meter, are acceptable for the DNP NMR application. Loss in a practical transmission line may be much higher than the loss calculated for the HE(11) mode due to mode conversion to higher order modes caused by waveguide imperfections or miter bends.

13.
J Magn Reson ; 224: 1-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23000974

RESUMO

We describe the design and implementation of the instrumentation required to perform DNP-NMR at higher field strengths than previously demonstrated, and report the first magic-angle spinning (MAS) DNP-NMR experiments performed at (1)H/e(-) frequencies of 700 MHz/460 GHz. The extension of DNP-NMR to 16.4 T has required the development of probe technology, cryogenics, gyrotrons, and microwave transmission lines. The probe contains a 460 GHz microwave channel, with corrugated waveguide, tapers, and miter-bends that couple microwave power to the sample. Experimental efficiency is increased by a cryogenic exchange system for 3.2 mm rotors within the 89 mm bore. Sample temperatures ≤85 K, resulting in improved DNP enhancements, are achieved by a novel heat exchanger design, stainless steel and brass vacuum jacketed transfer lines, and a bronze probe dewar. In addition, the heat exchanger is preceded with a nitrogen drying and generation system in series with a pre-cooling refrigerator. This reduces liquid nitrogen usage from >700 l per day to <200 l per day and allows for continuous (>7 days) cryogenic spinning without detrimental frost or ice formation. Initial enhancements, ε=-40, and a strong microwave power dependence suggests the possibility for considerable improvement. Finally, two-dimensional spectra of a model system demonstrate that the higher field provides excellent resolution, even in a glassy, cryoprotecting matrix.


Assuntos
Espectroscopia de Ressonância Magnética/instrumentação , Refrigeração/instrumentação , Manejo de Espécimes/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento
14.
Artigo em Inglês | MEDLINE | ID: mdl-25264391

RESUMO

This work focuses on the accuracy of the mode content measurements in an overmoded corrugated waveguide using measured radiated field patterns. Experimental results were obtained at 250 GHz using a vector network analyzer with over 70 dB of dynamic range. The intensity and phase profiles of the fields radiated from the end of the 19 mm diameter helically tapped brass waveguide were measured on planes at 7, 10, and 13 cm from the waveguide end. The measured fields were back propagated to the waveguide aperture to provide three independent estimates of the field at the waveguide exit aperture. Projecting that field onto the modes of the guide determined the waveguide mode content. The three independent mode content estimates were found to agree with one another to an accuracy of better than ±0.3%. These direct determinations of the mode content were compared with indirect measurements using the experimentally measured amplitude in three planes, with the phase determined by a phase retrieval algorithm. The phase retrieval technique using the planes at 7, 10, and 13 cm yielded a mode content estimate in excellent agreement, within 0.3%, of the direct measurements. Phase retrieval results using planes at 10, 20, and 30 cm were less accurate due to truncation of the measurement in the transverse plane. The reported measurements benefited greatly from a precise mechanical alignment of the scanner with respect to the waveguide axis. These results will help to understand the accuracy of mode content measurements made directly in cold test and indirectly in hot test using the phase retrieval technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...