Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytokine Growth Factor Rev ; 76: 86-98, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38233286

RESUMO

Cell-to-cell communication mediated by Extracellular Vesicles (EVs) is a novel and emerging area of research, especially during pregnancy, in which placenta derived EVs can facilitate the feto-maternal communication. EVs comprise a heterogeneous group of vesicle sub-populations with diverse physical and biochemical characteristics and originate by specific biogenesis mechanisms. EVs transfer molecular cargo (including proteins, nucleic acids, and lipids) between cells and are critical mediators of cell communication. There is growing interest among researchers to explore into the molecular cargo of EVs and their functions in a physiological and pathological context. For example, inflammatory mediators such as cytokines are shown to be released in EVs and EVs derived from immune cells play key roles in mediating the immune response as well as immunoregulatory pathways. Pregnancy complications such as gestational diabetes mellitus, preeclampsia, intrauterine growth restriction and preterm birth are associated with altered levels of circulating EVs, with differential EV cargo and bioactivity in target cells. This implicates the intriguing roles of EVs in reprogramming the maternal physiology during pregnancy. Moreover, the capacity of EVs to carry bioactive molecules makes them a promising tool for biomarker development and targeted therapies in pregnancy complications. This review summarizes the physiological and pathological roles played by EVs in pregnancy and pregnancy-related disorders and describes the potential of EVs to be translated into clinical applications in the diagnosis and treatment of pregnancy complications.


Assuntos
Vesículas Extracelulares , Pré-Eclâmpsia , Nascimento Prematuro , Recém-Nascido , Gravidez , Feminino , Humanos , Nascimento Prematuro/metabolismo , Nascimento Prematuro/patologia , Vesículas Extracelulares/fisiologia , Comunicação Celular
2.
J Neuroimmune Pharmacol ; 18(3): 462-475, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37589761

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective degeneration of dopaminergic neurons in the substantia nigra pars compacta resulting in an irreversible and a debilitating motor dysfunction. Though both genetic and idiopathic factors are implicated in the disease etiology, idiopathic PD comprise the majority of clinical cases and is caused by exposure to environmental toxicants and oxidative stress. Fyn kinase activation has been identified as an early molecular signaling event that primes neuroinflammatory and neurodegenerative events associated with dopaminergic cell death. However, the upstream regulator of Fyn activation remains unidentified. We investigated whether the lipid and tyrosine phosphatase PTEN (Phosphatase and Tensin homolog deleted on chromosome 10) could be the upstream regulator of Fyn activation in PD models as PTEN has been previously reported to contribute to Parkinsonian pathology. Our findings, using bioluminescence resonance energy transfer (BRET) and immunoblotting, indicate for the first time that PTEN is a critical early stress sensor in response to oxidative stress and neurotoxicants in in vitro models of PD. Pharmacological attenuation of PTEN activity rescues dopaminergic neurons from neurotoxicant-induced cytotoxicity by modulating Fyn kinase activation. Our findings also identify PTEN's novel roles in contributing to mitochondrial dysfunction which contribute to neurodegenerative processes. Interestingly, we found that PTEN positively regulates interleukin-1ß (IL-1ß) and the transcription of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Taken together, we have identified PTEN as a disease course altering pharmacological target that may be further validated for the development of novel therapeutic strategies targeting PD.


Assuntos
Neurônios Dopaminérgicos , PTEN Fosfo-Hidrolase , Doença de Parkinson , Humanos , Neurônios Dopaminérgicos/metabolismo , Estresse Oxidativo , Doença de Parkinson/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais/fisiologia , Animais , Ratos
3.
Drugs ; 83(5): 389-402, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36920652

RESUMO

Chronic unresolving inflammation is emerging as a key underlying pathological feature of many if not most diseases ranging from autoimmune conditions to cardiometabolic and neurological disorders. Dysregulated immune and inflammasome activation is thought to be the central driver of unresolving inflammation, which in some ways provides a unified theory of disease pathology and progression. Inflammasomes are a group of large cytosolic protein complexes that, in response to infection- or stress-associated stimuli, oligomerize and assemble to generate a platform for driving inflammation. This occurs through proteolytic activation of caspase-1-mediated inflammatory responses, including cleavage and secretion of the proinflammatory cytokines interleukin (IL)-1ß and IL-18, and initiation of pyroptosis, an inflammatory form of cell death. Several inflammasomes have been characterized. The most well-studied is the nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome, so named because the NLRP3 protein in the complex, which is primarily present in immune and inflammatory cells following activation by inflammatory stimuli, belongs to the family of nucleotide-binding and oligomerization domain (Nod) receptor proteins. Several NLRP3 inflammasome inhibitors are in development, all with multi-indication activity. This review discusses the current status, known mechanisms of action, and disease-modifying therapeutic potential of RRx-001, a direct NLRP3 inflammasome inhibitor under investigation in several late-stage anticancer clinical trials, including a phase 3 trial for the treatment of third-line and beyond small cell lung cancer (SCLC), an indication with no treatment, in which RRx-001 is combined with reintroduced chemotherapy from the first line, carboplatin/cisplatin and etoposide (ClinicalTrials.gov Identifier: NCT03699956). Studies from multiple independent groups have now confirmed that RRx-001 is safe and well tolerated in humans. Additionally, emerging evidence in preclinical animal models suggests that RRx-001 could be effective in a wide range of diseases where immune and inflammasome activation drives disease pathology.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Nucleotídeos
4.
J Transl Med ; 19(1): 360, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34416903

RESUMO

BACKGROUND: Gestational diabetes mellitus (GDM) is a serious public health issue affecting 9-15% of all pregnancies worldwide. Recently, it has been suggested that extracellular vesicles (EVs) play a role throughout gestation, including mediating a placental response to hyperglycaemia. Here, we investigated the EV-associated miRNA profile across gestation in GDM, assessed their utility in developing accurate, multivariate classification models, and determined the signaling pathways in skeletal muscle proteome associated with the changes in the EV miRNA profile. METHODS: Discovery: A retrospective, case-control study design was used to identify EV-associated miRNAs that vary across pregnancy and clinical status (i.e. GDM or Normal Glucose Tolerance, NGT). EVs were isolated from maternal plasma obtained at early, mid and late gestation (n = 29) and small RNA sequencing was performed. Validation: A longitudinal study design was used to quantify expression of selected miRNAs. EV miRNAs were quantified by real-time PCR (cases = 8, control = 14, samples at three times during pregnancy) and their individual and combined classification efficiencies were evaluated. Quantitative, data-independent acquisition mass spectrometry was use to establish the protein profile in skeletal muscle biopsies from normal and GDM. RESULTS: A total of 2822 miRNAs were analyzed using a small RNA library, and a total of 563 miRNAs that significantly changed (p < 0.05) across gestation and 101 miRNAs were significantly changed between NGT and GDM. Analysis of the miRNA changes in NGT and GDM separately identified a total of 256 (NGT-group), and 302 (GDM-group) miRNAs that change across gestation. A multivariate classification model was developed, based on the quantitative expression of EV-associated miRNAs, and the accuracy to correctly assign samples was > 90%. We identified a set of proteins in skeletal muscle biopsies from women with GDM associated with JAK-STAT signaling which could be targeted by the miRNA-92a-3p within circulating EVs. Interestingly, overexpression of miRNA-92a-3p in primary skeletal muscle cells increase insulin-stimulated glucose uptake. CONCLUSIONS: During early pregnancy, differently-expressed, EV-associated miRNAs may be of clinical utility in identifying presymptomatic women who will subsequently develop GDM later in gestation. We suggest that miRNA-92a-3p within EVs might be a protected mechanism to increase skeletal muscle insulin sensitivity in GDM.


Assuntos
Diabetes Gestacional , Vesículas Extracelulares , MicroRNAs , Estudos de Casos e Controles , Diabetes Gestacional/genética , Feminino , Humanos , Janus Quinases , Estudos Longitudinais , MicroRNAs/genética , Placenta , Gravidez , Estudos Retrospectivos , Fatores de Transcrição STAT , Transdução de Sinais
5.
Front Behav Neurosci ; 15: 683780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149373

RESUMO

The use of animal models for substance use disorder (SUD) has made an important contribution in the investigation of the behavioral and molecular mechanisms underlying substance abuse and addiction. Here, we review a novel and comprehensive behavioral platform to characterize addiction-like traits in rodents using a fully automated learning system, the IntelliCage. This system simultaneously captures the basic behavioral navigation, reward preference, and aversion, as well as the multi-dimensional complex behaviors and cognitive functions of group-housed rodents. It can reliably capture and track locomotor and cognitive pattern alterations associated with the development of substance addiction. Thus, the IntelliCage learning system offers a potentially efficient, flexible, and sensitive tool for the high-throughput screening of the rodent SUD model.

6.
Mol Neurobiol ; 58(8): 4188-4215, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34176095

RESUMO

Severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) due to novel coronavirus disease 2019 (COVID-19) has affected the global society in numerous unprecedented ways, with considerable morbidity and mortality. Both direct and indirect consequences from COVID-19 infection are recognized to give rise to cardio- and cerebrovascular complications. Despite current limited knowledge on COVID-19 pathogenesis, inflammation, endothelial dysfunction, and coagulopathy appear to play critical roles in COVID-19-associated cerebrovascular disease (CVD). One of the major subtypes of CVD is cerebral small vessel disease (CSVD) which represents a spectrum of pathological processes of various etiologies affecting the brain microcirculation that can trigger subsequent neuroinflammation and neurodegeneration. Prevalent with aging, CSVD is a recognized risk factor for stroke, vascular dementia, and Alzheimer's disease. In the background of COVID-19 infection, the heightened cellular activations from inflammations and oxidative stress may result in elevated levels of microthrombogenic extracellular-derived circulating microparticles (MPs). Consequently, MPs could act as pro-coagulant risk factor that may serve as microthrombi for the vulnerable microcirculation in the brain leading to CSVD manifestations. This review aims to appraise the accumulating body of evidence on the plausible impact of COVID-19 infection on the formation of microthrombogenic MPs that could lead to microthrombosis in CSVD manifestations, including occult CSVD which may last well beyond the pandemic era.


Assuntos
COVID-19/complicações , Micropartículas Derivadas de Células/metabolismo , Doenças de Pequenos Vasos Cerebrais/etiologia , Trombose/etiologia , COVID-19/diagnóstico por imagem , COVID-19/patologia , COVID-19/virologia , Humanos , Fatores de Risco , SARS-CoV-2/fisiologia
7.
Front Cardiovasc Med ; 8: 632131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718454

RESUMO

Cerebral small vessel disease (CSVD) represents a spectrum of pathological processes of various etiologies affecting the brain microcirculation that can trigger neuroinflammation and the subsequent neurodegenerative cascade. Prevalent with aging, CSVD is a recognized risk factor for stroke, vascular dementia, Alzheimer disease, and Parkinson disease. Despite being the most common neurodegenerative condition with cerebrocardiovascular axis, understanding about it remains poor. Interestingly, modifiable risk factors such as unhealthy diet including high intake of processed food, high-fat foods, and animal by-products are known to influence the non-neural peripheral events, such as in the gastrointestinal tract and cardiovascular stress through cellular inflammation and oxidation. One key outcome from such events, among others, includes the cellular activations that lead to elevated levels of endogenous cellular-derived circulating microparticles (MPs). MPs can be produced from various cellular origins including leukocytes, platelets, endothelial cells, microbiota, and microglia. MPs could act as microthrombogenic procoagulant that served as a plausible culprit for the vulnerable end-artery microcirculation in the brain as the end-organ leading to CSVD manifestations. However, little attention has been paid on the potential role of MPs in the onset and progression of CSVD spectrum. Corroboratively, the formation of MPs is known to be influenced by diet-induced cellular stress. Thus, this review aims to appraise the body of evidence on the dietary-related impacts on circulating MPs from non-neural peripheral origins that could serve as a plausible microthrombosis in CSVD manifestation as a precursor of neurodegeneration. Here, we elaborate on the pathomechanical features of MPs in health and disease states; relevance of dietary patterns on MP release; preclinical studies pertaining to diet-based MPs contribution to disease; MP level as putative surrogates for early disease biomarkers; and lastly, the potential of MPs manipulation with diet-based approach as a novel preventive measure for CSVD in an aging society worldwide.

8.
Placenta ; 102: 39-48, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33218577

RESUMO

Gestational diabetes mellitus (GDM) is a global health issue with significant short and long-term complications for both mother and baby. There is a strong need to identify an effective therapeutic that can prevent the development of GDM. A better understanding of the pathophysiology of GDM and the relationship between the adipose tissue, the placenta and fetal growth is required. The placenta regulates fetal growth by modulating nutrient transfer of glucose, amino acids and fatty acids. Various factors secreted by the adipose tissue, such as adipokines, adipocytokines and more recently identified extracellular vesicles, can influence inflammation and interact with placental nutrient transport. In this review, the role of the placental nutrient transporters and the adipose-derived factors that can influence their function will be discussed. A better understanding of these factors and their relationship may make a potential target for therapeutic interventions to prevent the development of GDM and its consequences.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Gestacional/metabolismo , Desenvolvimento Fetal , Diabetes Gestacional/fisiopatologia , Feminino , Humanos , Placenta/fisiopatologia , Gravidez
9.
J Mol Endocrinol ; 63(3): R51-R72, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31416051

RESUMO

Gestational diabetes mellitus (GDM) imposes serious short- and long-term health problems for mother and baby. An effective therapeutic that can reduce the incidence of GDM and improve long-term maternal and fetal outcomes is a major research priority, crucially important for public health. A lack of knowledge about the underlying pathophysiology of GDM has hampered the development of such therapeutics. What we do know, however, is that maternal insulin resistance, low-grade inflammation and endothelial cell dysfunction are three central features of pregnancies complicated by GDM. Indeed, data generated over the past decade have implicated a number of candidate regulators of insulin resistance, inflammation and endothelial cell dysfunction in placenta, maternal adipose tissue and skeletal muscle. These include nuclear factor-κB (NF-κB), peroxisome proliferator-activated receptors (PPARs), sirtuins (SIRTs), 5' AMP-activated protein kinase (AMPK), glycogen synthase kinase 3 (GSK3), PI3K/mTOR, inflammasome and endoplasmic reticulum (ER) stress. In this review, the identification of these as key modulators of GDM will be discussed. The biochemical pathways involved in the formation of these may represent potential sites for intervention that may translate to therapeutic interventions to prevent the development of GDM.


Assuntos
Diabetes Gestacional/genética , Transdução de Sinais/genética , Diabetes Gestacional/fisiopatologia , Feminino , Humanos , Inflamação/patologia , Resistência à Insulina/genética , Modelos Biológicos , Placenta/patologia , Placenta/fisiopatologia , Gravidez
10.
Proteomics ; 19(1-2): e1800164, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30536821

RESUMO

Several factors including placental hormones (PH) released from the human placenta have been associated with the development of insulin resistance and gestational diabetes mellitus (GDM). However, circulating levels of PH does not correlate well with maternal insulin sensitivity across gestation, suggesting that other, previously unrecognized, mechanisms may be involved. The levels of circulating exosomes are higher in GDM compared to normal. GDM derived exosomes produce greater release of pro-inflammatory cytokines from endothelial cells compared to exosomes from normal, suggesting that their contents may differ compared to normal pregnancies. Using a quantitative, information-independent acquisition (Sequential Windowed Acquisition of All Theoretical Mass Spectra [SWATH]) approach, differentially abundant circulating exosome proteins are identified in women with normal glucose tolerance (NGT) and GDM at the time of GDM diagnosis. A total of 78 statistically significant proteins in the relative expression of exosomal proteins in GDM are compared with NGT. Bioinformatic analysis shows that the exosomal proteins in GDM target pathways are mainly associated with energy production, inflammation, and metabolism. Finally, an independent cohort of patients is used to validate some of the proteins identified by SWATH. The data obtained may be of utility in elucidating the underlying physiological mechanisms associated with insulin resistance in GDM.


Assuntos
Diabetes Gestacional/metabolismo , Exossomos/metabolismo , Espectrometria de Massas/métodos , Proteômica/métodos , Biologia Computacional , Feminino , Humanos , Gravidez , Transdução de Sinais/fisiologia
11.
J Clin Endocrinol Metab ; 104(5): 1735-1752, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517676

RESUMO

CONTEXT: Molecules produced by adipose tissue (AT) function as an endocrine link between maternal AT and fetal growth by regulating placental function in normal women and women with gestational diabetes mellitus (GDM). OBJECTIVE: We hypothesized that AT-derived exosomes (exo-AT) from women with GDM would carry a specific set of proteins that influences glucose metabolism in the placenta. DESIGN: Exosomes were isolated from omental AT-conditioned media from normal glucose tolerant (NGT) pregnant women (n = 65) and pregnant women with GDM (n = 82). Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry was used to construct a small ion library from AT and exosomal proteins, followed by ingenuity pathway analysis to determine the canonical pathways and biofunctions. The effect of exosomes on human placental cells was determined using a Human Glucose Metabolism RT2 Profiler PCR array. RESULTS: The number of exosomes (vesicles/µg of tissue/24 hours) was substantially (1.7-fold) greater in GDM than in NGT, and the number of exosomes correlated positively with the birthweight Z score. Ingenuity pathway analysis of the exosomal proteins revealed differential expression of the proteins targeting the sirtuin signaling pathway, oxidative phosphorylation, and mechanistic target of rapamycin signaling pathway in GDM compared with NGT. GDM exo-AT increased the expression of genes associated with glycolysis and gluconeogenesis in placental cells compared with the effect of NGT exo-AT. CONCLUSIONS: Our findings are consistent with the possibility that AT exosomes play an important role in mediating the changes in placental function in GDM and might be responsible for some of the adverse consequences in this pregnancy complication, such as fetal overgrowth.


Assuntos
Tecido Adiposo/metabolismo , Biomarcadores/metabolismo , Diabetes Gestacional/fisiopatologia , Exossomos/metabolismo , Glucose/metabolismo , Placenta/metabolismo , Proteoma/análise , Diabetes Gestacional/metabolismo , Feminino , Humanos , Gravidez , Prognóstico , Transdução de Sinais
12.
Clin Sci (Lond) ; 132(22): 2451-2467, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30254065

RESUMO

There is increasing evidence that miRNAs, which are enriched in nanovesicles called exosomes, are important regulators of gene expression. When compared with normal pregnancies, pregnancies with gestational diabetes mellitus (GDM) are associated with skeletal muscle insulin resistance as well as increased levels of circulating placental exosomes. Here we investigated whether placental exosomes in GDM carry a specific set of miRNAs associated with skeletal muscle insulin sensitivity. Exosomes were isolated from chorionic villous (CV) explants from both women with Normal Glucose Tolerant (NGT) and GDM pregnancies. Using miRNA sequencing, we identified a specific set of miRNAs selectively enriched with exosomes and compared with their cells of origin indicating a specific packaging of miRNAs into exosomes. Gene target and ontology analysis of miRNA differentially expressed in exosomes secreted in GDM compared with NGT are associated with pathways regulating cell migration and carbohydrate metabolism. We determined the expression of a selected set of miRNAs in placenta, plasma, and skeletal muscle biopsies from NGT and GDM. Interestingly, the expression of these miRNAs varied in a consistent pattern in the placenta, in circulating exosomes, and in skeletal muscle in GDM. Placental exosomes from GDM pregnancies decreased insulin-stimulated migration and glucose uptake in primary skeletal muscle cells obtained from patients with normal insulin sensitivity. Interestingly, placental exosomes from NGT increase migration and glucose uptake in response to insulin in skeletal muscle from diabetic subjects. These findings suggest that placental exosomes might have a role in the changes on insulin sensitivity in normal and GDM pregnancies.


Assuntos
Vilosidades Coriônicas/metabolismo , Diabetes Gestacional/genética , Exossomos/genética , Hipoglicemiantes/farmacologia , Resistência à Insulina/genética , Insulina/farmacologia , MicroRNAs/metabolismo , Mioblastos Esqueléticos/efeitos dos fármacos , Transcriptoma , Adulto , Estudos de Casos e Controles , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/metabolismo , Exossomos/metabolismo , Feminino , Glucose/metabolismo , Humanos , MicroRNAs/genética , Mioblastos Esqueléticos/metabolismo , Gravidez , Adulto Jovem
13.
Artigo em Inglês | MEDLINE | ID: mdl-29021781

RESUMO

Obesity is an important public health issue worldwide, where it is commonly associated with the development of metabolic disorders, especially insulin resistance (IR). Maternal obesity is associated with an increased risk of pregnancy complications, especially gestational diabetes mellitus (GDM). Metabolism is a vital process for energy production and the maintenance of essential cellular functions. Excess energy storage is predominantly regulated by the adipose tissue. Primarily made up of adipocytes, adipose tissue acts as the body's major energy reservoir. The role of adipose tissue, however, is not restricted to a "bag of fat." The adipose tissue is an endocrine organ, secreting various adipokines, enzymes, growth factors, and hormones that take part in glucose and lipid metabolism. In obesity, the greater portion of the adipose tissue comprises fat, and there is increased pro-inflammatory cytokine secretion, macrophage infiltration, and reduced insulin sensitivity. Obesity contributes to systemic IR and its associated metabolic complications. Similar to adipose tissue, the placenta is also an endocrine organ. During pregnancy, the placenta secretes various molecules to maintain pregnancy physiology. In addition, the placenta plays an important role in metabolism and exchange of nutrients between mother and fetus. Inflammation at the placenta may contribute to the severity of maternal IR and her likelihood of developing GDM and may also mediate the adverse consequences of obesity and GDM on the fetus. Interestingly, studies on maternal insulin sensitivity and secretion of placental hormones have not shown a positive correlation between these phenomena. Recently, a great interest in the field of extracellular vesicles (EVs) has been observed in the literature. EVs are produced by a wide range of cells and are present in all biological fluids. EVs are involved in cell-to-cell communication. Recent evidence points to an association between adipose tissue-derived EVs and metabolic syndrome in obesity. In this review, we will discuss the changes in human placenta and adipose tissue in GDM and obesity and summarize the findings regarding the role of adipose tissue and placenta-derived EVs, with an emphasis on exosomes in obesity, and the contribution of obesity to the development of GDM.

14.
Addict Biol ; 22(4): 967-976, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26990882

RESUMO

Kratom (Mitragyna speciosa) is a widely abused herbal drug preparation in Southeast Asia. It is often consumed as a substitute for heroin, but imposing itself unknown harms and addictive burdens. Mitragynine is the major psychostimulant constituent of kratom that has recently been reported to induce morphine-like behavioural and cognitive effects in rodents. The effects of chronic consumption on non-drug related behaviours are still unclear. In the present study, we investigated the effects of chronic mitragynine treatment on spontaneous activity, reward-related behaviour and cognition in mice in an IntelliCage® system, and compared them with those of morphine and Δ-9-tetrahydrocannabinol (THC). We found that chronic mitragynine treatment significantly potentiated horizontal exploratory activity. It enhanced spontaneous sucrose preference and also its persistence when the preference had aversive consequences. Furthermore, mitragynine impaired place learning and its reversal. Thereby, mitragynine effects closely resembled that of morphine and THC sensitisation. These findings suggest that chronic mitragynine exposure enhances spontaneous locomotor activity and the preference for natural rewards, but impairs learning and memory. These findings confirm pleiotropic effects of mitragynine (kratom) on human lifestyle, but may also support the recognition of the drug's harm potential.


Assuntos
Comportamento Animal/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Punição , Recompensa , Alcaloides de Triptamina e Secologanina/farmacologia , Transtornos Relacionados ao Uso de Substâncias/complicações , Animais , Modelos Animais de Doenças , Masculino , Camundongos
15.
Placenta ; 54: 83-88, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27939894

RESUMO

The maternal physiology experiences numerous changes during pregnancy which are essential in controlling and maintaining maternal metabolic adaptations and fetal development. The human placenta is an organ that serves as the primary interface between the maternal and fetal circulation, thereby supplying the fetus with nutrients, blood and oxygen through the umbilical cord. During gestation, the placenta continuously releases several molecules into maternal circulation, including hormones, proteins, RNA and DNA. Interestingly, the presence of extracellular vesicles (EVs) of placental origin has been identified in maternal circulation across gestation. EVs can be categorised according to their size and/or origin into microvesicles (∼150-1000 nm) and exosomes (∼40-120 nm). Microvesicles are released by budding from the plasmatic membrane, whereas exosome release is by fusion of multivesicular bodies with the plasmatic membrane. Exosomes released from placental cells have been found to be regulated by oxygen tension and glucose concentration. Furthermore, maternal exosomes have the ability to stimulate cytokine release from endothelial cells. In this review, we will discuss the role of EVs during fetal-maternal communication during gestation with a special emphasis on exosomes.


Assuntos
Vesículas Extracelulares/fisiologia , Troca Materno-Fetal , Feminino , Humanos , Gravidez , Complicações na Gravidez
16.
Neurosci Biobehav Rev ; 37(2): 138-51, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23206666

RESUMO

Kratom (or Ketum) is a psychoactive plant preparation used in Southeast Asia. It is derived from the plant Mitragyna speciosa Korth. Kratom as well as its main alkaloid, mitragynine, currently spreads around the world. Thus, addiction potential and adverse health consequences are becoming an important issue for health authorities. Here we reviewed the available evidence and identified future research needs. It was found that mitragynine and M. speciosa preparations are systematically consumed with rather well defined instrumentalization goals, e.g. to enhance tolerance for hard work or as a substitute in the self-treatment of opiate addiction. There is also evidence from experimental animal models supporting analgesic, muscle relaxant, anti-inflammatory as well as strong anorectic effects. In humans, regular consumption may escalate, lead to tolerance and may yield aversive withdrawal effects. Mitragynine and its derivatives actions in the central nervous system involve µ-opioid receptors, neuronal Ca²âº channels and descending monoaminergic projections. Altogether, available data currently suggest both, a therapeutic as well as an abuse potential.


Assuntos
Analgésicos/efeitos adversos , Comportamento Aditivo/psicologia , Sistema Nervoso Central/efeitos dos fármacos , Mitragyna/efeitos adversos , Alcaloides de Triptamina e Secologanina/efeitos adversos , Transtornos Relacionados ao Uso de Substâncias/psicologia , Alcaloides/química , Alcaloides/farmacologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Sudeste Asiático , Modelos Animais de Doenças , Humanos , Mitragyna/química , Estrutura Molecular , Extratos Vegetais/efeitos adversos , Alcaloides de Triptamina e Secologanina/farmacologia , Alcaloides de Triptamina e Secologanina/uso terapêutico , Automedicação/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...