Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Screen ; 19(7): 1079-89, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24789006

RESUMO

G protein-coupled receptors (GPCRs) are one of the most popular and proven target classes for therapeutic intervention. The increased appreciation for allosteric modulation, receptor oligomerization, and biased agonism has led to the development of new assay platforms that seek to capitalize on these aspects of GPCR biology. High-content screening is particularly well suited for GPCR drug discovery given the ability to image and quantify changes in multiple cellular parameters, to resolve subcellular structures, and to monitor events within a physiologically relevant environment. Focusing on the sphingosine-1-phosphate (S1P1) receptor, we evaluated the utility of high-content approaches in hit identification efforts by developing and applying assays to monitor ß-arrestin translocation, GPCR internalization, and GPCR recycling kinetics. Using these approaches in combination with more traditional GPCR screening assays, we identified compounds whose unique pharmacological profiles would have gone unnoticed if using a single platform. In addition, we identified a compound that induces an atypical pattern of ß-arrestin translocation and GPCR recycling kinetics. Our results highlight the value of high-content imaging in GPCR drug discovery efforts and emphasize the value of a multiassay approach to study pharmacological properties of compounds of interest.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Receptores de Lisoesfingolipídeo/química , Sítio Alostérico , Animais , Bioensaio/métodos , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , AMP Cíclico/química , Descoberta de Drogas , Proteínas de Fluorescência Verde/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Ligação Proteica , Transporte Proteico , Ratos , Reprodutibilidade dos Testes , beta-Arrestinas/metabolismo
2.
Toxicol In Vitro ; 23(6): 1170-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19523510

RESUMO

Proximal tubules of the kidneys are one of the most common targets of nephrotoxic drugs and chemicals. Screens to predict nephrotoxic potential of compounds with insights to mechanisms of toxicity facilitate lead optimization, guide structure-activity relationships, minimize risks of clinical nephrotoxicity and therefore are valuable in the process of drug discovery. We developed and characterized an in vitro assay multiplexed to measure several endpoints of cytotoxicity using HK-2 cells. Assays for lactate dehydrogenase, cellular caspase 3/7 activation, resazurin dye reduction and Hoechst 33342 DNA staining were multiplexed to maximize the ability to detect cell injury. Assays were performed after 5- or 24-h incubations to further enhance the sensitivity of detection of toxicity. Individual assays were optimized for cell density, assay linearity and assay performance under multiplexed conditions. Inducers of apoptosis (staurosporine) and necrosis (perhexiline) were used to validate the mechanistic aspects of cell death. Nephrotoxic compounds (5-fluorouracil, gentamicin, cisplatin, acetaminophen, para-aminophenol, potassium dichromate, ibuprofen, doxorubicin, cyclosporine, citrinin, puromycin) were used to determine the potential of this method to detect proximal tubule toxicity of compounds. Overall, this cost-effective multiplexed platform is more sensitive than a single endpoint assay, provides mechanistic cues of toxicity and is amenable for higher throughput screening.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Túbulos Renais Proximais/efeitos dos fármacos , Testes de Toxicidade/métodos , Apoptose/efeitos dos fármacos , Células Cultivadas , Análise Custo-Benefício , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Necrose/induzido quimicamente , Perexilina/toxicidade , Estaurosporina/toxicidade , Fatores de Tempo , Testes de Toxicidade/economia
3.
J Biol Chem ; 282(51): 36829-36, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17932033

RESUMO

The enzyme gamma-secretase has long been considered a potential pharmaceutical target for Alzheimer disease. Presenilin (the catalytic subunit of gamma-secretase) and signal peptide peptidase (SPP) are related transmembrane aspartyl proteases that cleave transmembrane substrates. SPP and gamma-secretase are pharmacologically similar in that they are targeted by many of the same small molecules, including transition state analogs, non-transition state inhibitors, and amyloid beta-peptide modulators. One difference between presenilin and SPP is that the proteolytic activity of presenilin functions only within a multisubunit complex, whereas SPP requires no additional protein cofactors for activity. In this study, gamma-secretase inhibitor radioligands were used to evaluate SPP and gamma-secretase inhibitor binding pharmacology. We found that the SPP enzyme exhibited distinct binding sites for transition state analogs, non-transition state inhibitors, and the nonsteroidal anti-inflammatory drug sulindac sulfide, analogous to those reported previously for gamma-secretase. In the course of this study, cultured cells were found to contain an abundance of SPP binding activity, most likely contributed by several of the SPP family proteins. The number of SPP binding sites was in excess of gamma-secretase binding sites, making it essential to use selective radioligands for evaluation of gamma-secretase binding under these conditions. This study provides further support for the idea that SPP is a useful model of inhibitory mechanisms and structure in the SPP/presenilin protein family.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Anti-Inflamatórios não Esteroides/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Presenilinas/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Sulindaco/análogos & derivados , Doença de Alzheimer/enzimologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Sítios de Ligação , Domínio Catalítico , Linhagem Celular , Humanos , Ligantes , Modelos Moleculares , Presenilinas/metabolismo , Sulindaco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...