Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pain ; 165(3): 550-564, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851396

RESUMO

ABSTRACT: Neuromas are a substantial cause of morbidity and reduction in quality of life. This is not only caused by a disruption in motor and sensory function from the underlying nerve injury but also by the debilitating effects of neuropathic pain resulting from symptomatic neuromas. A wide range of surgical and therapeutic modalities have been introduced to mitigate this pain. Nevertheless, no single treatment option has been successful in completely resolving the associated constellation of symptoms. While certain novel surgical techniques have shown promising results in reducing neuroma-derived and phantom limb pain, their effectiveness and the exact mechanism behind their pain-relieving capacities have not yet been defined. Furthermore, surgery has inherent risks, may not be suitable for many patients, and may yet still fail to relieve pain. Therefore, there remains a great clinical need for additional therapeutic modalities to further improve treatment for patients with devastating injuries that lead to symptomatic neuromas. However, the molecular mechanisms and genetic contributions behind the regulatory programs that drive neuroma formation-as well as the resulting neuropathic pain-remain incompletely understood. Here, we review the histopathological features of symptomatic neuromas, our current understanding of the mechanisms that favor neuroma formation, and the putative contributory signals and regulatory programs that facilitate somatic pain, including neurotrophic factors, neuroinflammatory peptides, cytokines, along with transient receptor potential, and ionotropic channels that suggest possible approaches and innovations to identify novel clinical therapeutics.


Assuntos
Neuralgia , Neuroma , Membro Fantasma , Humanos , Qualidade de Vida , Neuroma/etiologia , Neuralgia/etiologia , Biologia
2.
Nat Commun ; 14(1): 5632, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704594

RESUMO

With concurrent global epidemics of chronic pain and opioid use disorders, there is a critical need to identify, target and manipulate specific cell populations expressing the mu-opioid receptor (MOR). However, available tools and transgenic models for gaining long-term genetic access to MOR+ neural cell types and circuits involved in modulating pain, analgesia and addiction across species are limited. To address this, we developed a catalog of MOR promoter (MORp) based constructs packaged into adeno-associated viral vectors that drive transgene expression in MOR+ cells. MORp constructs designed from promoter regions upstream of the mouse Oprm1 gene (mMORp) were validated for transduction efficiency and selectivity in endogenous MOR+ neurons in the brain, spinal cord, and periphery of mice, with additional studies revealing robust expression in rats, shrews, and human induced pluripotent stem cell (iPSC)-derived nociceptors. The use of mMORp for in vivo fiber photometry, behavioral chemogenetics, and intersectional genetic strategies is also demonstrated. Lastly, a human designed MORp (hMORp) efficiently transduced macaque cortical OPRM1+ cells. Together, our MORp toolkit provides researchers cell type specific genetic access to target and functionally manipulate mu-opioidergic neurons across a range of vertebrate species and translational models for pain, addiction, and neuropsychiatric disorders.


Assuntos
Analgesia , Dor Crônica , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Camundongos , Ratos , Macaca , Receptores Opioides , Receptores Opioides mu/genética , Transgenes
3.
Sci Transl Med ; 15(708): eadg6241, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556559

RESUMO

Oncomodulin (Ocm) is a myeloid cell-derived growth factor that enables axon regeneration in mice and rats after optic nerve injury or peripheral nerve injury, yet the mechanisms underlying its activity are unknown. Using proximity biotinylation, coimmunoprecipitation, surface plasmon resonance, and ectopic expression, we have identified armadillo-repeat protein C10 (ArmC10) as a high-affinity receptor for Ocm. ArmC10 deletion suppressed inflammation-induced axon regeneration in the injured optic nerves of mice. ArmC10 deletion also suppressed the ability of lesioned sensory neurons to regenerate peripheral axons rapidly after a second injury and to regenerate their central axons after spinal cord injury in mice (the conditioning lesion effect). Conversely, Ocm acted through ArmC10 to accelerate optic nerve and peripheral nerve regeneration and to enable spinal cord axon regeneration in these mouse nerve injury models. We showed that ArmC10 is highly expressed in human-induced pluripotent stem cell-derived sensory neurons and that exposure to Ocm altered gene expression and enhanced neurite outgrowth. ArmC10 was also expressed in human monocytes, and Ocm increased the expression of immune modulatory genes in these cells. These findings suggest that Ocm acting through its receptor ArmC10 may be a useful therapeutic target for nerve repair and immune modulation.


Assuntos
Axônios , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Camundongos , Gânglios Espinais/metabolismo , Regeneração Nervosa , Crescimento Neuronal , Células Receptoras Sensoriais
4.
Stem Cell Reports ; 18(4): 1030-1047, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37044067

RESUMO

Development of new non-addictive analgesics requires advanced strategies to differentiate human pluripotent stem cells (hPSCs) into relevant cell types. Following principles of developmental biology and translational applicability, here we developed an efficient stepwise differentiation method for peptidergic and non-peptidergic nociceptors. By modulating specific cell signaling pathways, hPSCs were first converted into SOX10+ neural crest, followed by differentiation into sensory neurons. Detailed characterization, including ultrastructural analysis, confirmed that the hPSC-derived nociceptors displayed cellular and molecular features comparable to native dorsal root ganglion (DRG) neurons, and expressed high-threshold primary sensory neuron markers, transcription factors, neuropeptides, and over 150 ion channels and receptors relevant for pain research and axonal growth/regeneration studies (e.g., TRPV1, NAV1.7, NAV1.8, TAC1, CALCA, GAP43, DPYSL2, NMNAT2). Moreover, after confirming robust functional activities and differential response to noxious stimuli and specific drugs, a robotic cell culture system was employed to produce large quantities of human sensory neurons, which can be used to develop nociceptor-selective analgesics.


Assuntos
Neurônios , Células-Tronco Pluripotentes , Humanos , Neurônios/metabolismo , Nociceptores , Diferenciação Celular , Transdução de Sinais , Gânglios Espinais/metabolismo , Células Receptoras Sensoriais
5.
Front Pharmacol ; 13: 872477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370742

RESUMO

Local anesthetics with long-lasting effects and selectivity for nociceptors have been sought over the past decades. In this study, we investigated whether amiodarone, a multiple channel blocker, provides long-lasting local anesthesia and whether adding a TRPV1 channel activator selectively prolongs sensory anesthetic effects without prolonging motor blockade. Additionally, we examined whether amiodarone provides long-lasting analgesic effects against inflammatory pain without TRPV1 channel activator co-administration. In the sciatic nerve block model, 32 adult C57BL/6J mice received either bupivacaine, amiodarone with or without capsaicin (a TRPV1 agonist), or vehicle via peri-sciatic nerve injection. Sensory and motor blockade were assessed either by pinprick and toe spread tests, respectively. In another set of 16 mice, inflammatory pain was induced in the hind paw by zymosan injection, followed by administration of either amiodarone or vehicle. Mechanical and thermal sensitivity and paw thickness were assessed using the von Frey and Hargreaves tests, respectively. The possible cardiovascular and neurological side effects of local amiodarone injection were assessed in another set of 12 mice. In the sciatic nerve block model, amiodarone produced robust anesthesia, and the co-administration of TRPV1 agonist capsaicin prolonged the duration of sensory blockade, but not that of motor blockade [complete sensory block duration: 195.0 ± 9.8 min vs. 28.8 ± 1.3 min, F (2, 21) = 317.6, p < 0.01, complete motor block duration: 27.5 ± 1.6 min vs. 21.3 ± 2.3 min, F (2, 22) = 11.1, p = 0.0695]. In the zymosan-induced inflammatory pain model, low-dose amiodarone was effective in reversing the mechanical and thermal hypersensitivity not requiring capsaicin co-administration [50% withdrawal threshold at 8 h (g): 0.85 ± 0.09 vs. 0.25 ± 0.08, p < 0.01, withdrawal latency at 4 h (s) 8.5 ± 0.5 vs. 5.7 ± 1.4, p < 0.05]. Low-dose amiodarone did not affect zymosan-induced paw inflammation. Local amiodarone did not cause cardiovascular or central nervous system side effects. Amiodarone may have the potential to be a long-acting and nociceptor-selective local anesthetic and analgesic method acting over open-state large-pore channels.

6.
Elife ; 112022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35179483

RESUMO

Cannabidiol (CBD), a chemical found in the Cannabis sativa plant, is a clinically effective antiepileptic drug whose mechanism of action is unknown. Using a fluorescence-based thallium flux assay, we performed a large-scale screen and found enhancement of flux through heterologously expressed human Kv7.2/7.3 channels by CBD. Patch-clamp recordings showed that CBD acts at submicromolar concentrations to shift the voltage dependence of Kv7.2/7.3 channels in the hyperpolarizing direction, producing a dramatic enhancement of current at voltages near -50 mV. CBD enhanced native M-current in mouse superior cervical ganglion starting at concentrations of 30 nM and also enhanced M-current in rat hippocampal neurons. The potent enhancement of Kv2/7.3 channels by CBD may contribute to its effectiveness as an antiepileptic drug by reducing neuronal hyperexcitability.


Assuntos
Canabidiol/farmacologia , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Neurônios/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Neurônios/efeitos dos fármacos , Ratos
7.
Sci Transl Med ; 13(619): eabj9837, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34757806

RESUMO

Despite substantial efforts dedicated to the development of new, nonaddictive analgesics, success in treating pain has been limited. Clinically available analgesic agents generally lack efficacy and may have undesirable side effects. Traditional target-based drug discovery efforts that generate compounds with selectivity for single targets have a high rate of attrition because of their poor clinical efficacy. Here, we examine the challenges associated with the current analgesic drug discovery model and review evidence in favor of stem cell­derived neuronal-based screening approaches for the identification of analgesic targets and compounds for treating diverse forms of acute and chronic pain.


Assuntos
Dor Crônica , Analgésicos/uso terapêutico , Dor Crônica/tratamento farmacológico , Humanos , Nociceptores
8.
Anesthesiology ; 133(3): 583-594, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32541553

RESUMO

BACKGROUND: Recent cryo-electron microscopic imaging studies have shown that in addition to binding to the classical extracellular benzodiazepine binding site of the α1ß3γ2L γ-aminobutyric acid type A (GABAA) receptor, diazepam also binds to etomidate binding sites located in the transmembrane receptor domain. Because such binding is characterized by low modulatory efficacy, the authors hypothesized that diazepam would act in vitro and in vivo as a competitive etomidate antagonist. METHODS: The concentration-dependent actions of diazepam on 20 µM etomidate-activated and 6 µM GABA-activated currents were defined (in the absence and presence of flumazenil) in oocyte-expressed α1ß3γ2L GABAA receptors using voltage clamp electrophysiology. The ability of diazepam to inhibit receptor labeling of purified α1ß3γ2L GABAA receptors by [H]azietomidate was assessed in photoaffinity labeling protection studies. The impact of diazepam (in the absence and presence of flumazenil) on the anesthetic potencies of etomidate and ketamine was compared in a zebrafish model. RESULTS: At nanomolar concentrations, diazepam comparably potentiated etomidate-activated and GABA-activated GABAA receptor peak current amplitudes in a flumazenil-reversible manner. The half-maximal potentiating concentrations were 39 nM (95% CI, 27 to 55 nM) and 26 nM (95% CI, 16 to 41 nM), respectively. However, at micromolar concentrations, diazepam reduced etomidate-activated, but not GABA-activated, GABAA receptor peak current amplitudes in a concentration-dependent manner with a half-maximal inhibitory concentration of 9.6 µM (95% CI, 7.6 to 12 µM). Diazepam (12.5 to 50 µM) also right-shifted the etomidate-concentration response curve for direct activation without reducing the maximal response and inhibited receptor photoaffinity labeling by [H]azietomidate. When administered with flumazenil, 50 µM diazepam shifted the etomidate (but not the ketamine) concentration-response curve for anesthesia rightward, increasing the etomidate EC50 by 18-fold. CONCLUSIONS: At micromolar concentrations and in the presence of flumazenil to inhibit allosteric modulation via the classical benzodiazepine binding site of the GABAA receptor, diazepam acts as an in vitro and in vivo competitive etomidate antagonist.


Assuntos
Diazepam/farmacologia , Etomidato/antagonistas & inibidores , Hipnóticos e Sedativos/farmacologia , Receptores de GABA/efeitos dos fármacos , Animais , Antagonismo de Drogas , Hipnóticos e Sedativos/antagonistas & inibidores , Modelos Animais , Peixe-Zebra
9.
J Biol Chem ; 295(33): 11495-11512, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32540960

RESUMO

Allopregnanolone (3α5α-P), pregnanolone, and their synthetic derivatives are potent positive allosteric modulators (PAMs) of GABAA receptors (GABAARs) with in vivo anesthetic, anxiolytic, and anti-convulsant effects. Mutational analysis, photoaffinity labeling, and structural studies have provided evidence for intersubunit and intrasubunit steroid-binding sites in the GABAAR transmembrane domain, but revealed only little definition of their binding properties. Here, we identified steroid-binding sites in purified human α1ß3 and α1ß3γ2 GABAARs by photoaffinity labeling with [3H]21-[4-(3-(trifluoromethyl)-3H-diazirine-3-yl)benzoxy]allopregnanolone ([3H]21-pTFDBzox-AP), a potent GABAAR PAM. Protein microsequencing established 3α5α-P inhibitable photolabeling of amino acids near the cytoplasmic end of the ß subunit M4 (ß3Pro-415, ß3Leu-417, and ß3Thr-418) and M3 (ß3Arg-309) helices located at the base of a pocket in the ß+-α- subunit interface that extends to the level of αGln-242, a steroid sensitivity determinant in the αM1 helix. Competition photolabeling established that this site binds with high affinity a structurally diverse group of 3α-OH steroids that act as anesthetics, anti-epileptics, and anti-depressants. The presence of a 3α-OH was crucial: 3-acetylated, 3-deoxy, and 3-oxo analogs of 3α5α-P, as well as 3ß-OH analogs that are GABAAR antagonists, bound with at least 1000-fold lower affinity than 3α5α-P. Similarly, for GABAAR PAMs with the C-20 carbonyl of 3α5α-P or pregnanolone reduced to a hydroxyl, binding affinity is reduced by 1,000-fold, whereas binding is retained after deoxygenation at the C-20 position. These results provide a first insight into the structure-activity relationship at the GABAAR ß+-α- subunit interface steroid-binding site and identify several steroid PAMs that act via other sites.


Assuntos
Receptores de GABA-A/metabolismo , Esteroides/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Modelos Moleculares , Marcadores de Fotoafinidade/análise , Marcadores de Fotoafinidade/metabolismo , Pregnanolona/análise , Pregnanolona/metabolismo , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de GABA-A/química , Esteroides/química
10.
Mol Pharmacol ; 95(6): 615-628, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30952799

RESUMO

GABAA receptors (GABAARs) are targets for important classes of clinical agents (e.g., anxiolytics, anticonvulsants, and general anesthetics) that act as positive allosteric modulators (PAMs). Previously, using photoreactive analogs of etomidate ([3H]azietomidate) and mephobarbital [[3H]1-methyl-5-allyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid ([3H]R-mTFD-MPAB)], we identified two homologous but pharmacologically distinct classes of general anesthetic binding sites in the α1ß3γ2 GABAAR transmembrane domain at ß +-α - (ß + sites) and α +-ß -/γ +-ß - (ß - sites) subunit interfaces. We now use competition photolabeling with [3H]azietomidate and [3H]R-mTFD-MPAB to identify para-substituted propofol analogs and other drugs that bind selectively to intersubunit anesthetic sites. Propofol and 4-chloro-propofol bind with 5-fold selectivity to ß +, while derivatives with bulkier lipophilic substitutions [4-(tert-butyl)-propofol and 4-(hydroxyl(phenyl)methyl)-propofol] bind with ∼10-fold higher affinity to ß - sites. Similar to R-mTFD-MPAB and propofol, these drugs bind in the presence of GABA with similar affinity to the α +-ß - and γ +-ß - sites. However, we discovered four compounds that bind with different affinities to the two ß - interface sites. Two of these bind with higher affinity to one of the ß - sites than to the ß + sites. We deduce that 4-benzoyl-propofol binds with >100-fold higher affinity to the γ +-ß - site than to the α +-ß - or ß +-α - sites, whereas loreclezole, an anticonvulsant, binds with 5- and 100-fold higher affinity to the α +-ß - site than to the ß + and γ +-ß - sites. These studies provide a first identification of PAMs that bind selectively to a single intersubunit site in the GABAAR transmembrane domain, a property that may facilitate the development of subtype selective GABAAR PAMs.


Assuntos
Anestésicos/farmacologia , Propofol/análogos & derivados , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Regulação Alostérica , Anestésicos/química , Bicuculina/química , Bicuculina/farmacologia , Sítios de Ligação , Etomidato/química , Etomidato/farmacologia , Células HEK293 , Humanos , Propofol/química , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Triazóis/química , Triazóis/farmacologia
11.
Eur J Med Chem ; 162: 810-824, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30544077

RESUMO

Pregnanolone and allopregnanolone-type ligands exert general anesthetic, anticonvulsant and anxiolytic effects due to their positive modulatory interactions with the GABAA receptors in the brain. Binding sites for these neurosteroids have been recently identified at subunit interfaces in the transmembrane domain (TMD) of homomeric ß3 GABAA receptors using photoaffinity labeling techniques, and in homomeric chimeric receptors containing GABAA receptor α subunit TMDs by crystallography. Steroid binding sites have yet to be determined in human, heteromeric, functionally reconstituted, full-length, glycosylated GABAA receptors. Here, we report on the synthesis and pharmacological characterization of several photoaffinity analogs of pregnanolone and allopregnanolone, of which 21-[4-(3-(trifluoromethyl)-3H-diazirin-3-yl)benzoxy]allopregnanolone (21-pTFDBzox-AP) was the most potent ligand. It is a partial positive modulator of the human α1ß3 and α1ß3γ2L GABAA receptors at sub-micromolar concentrations. [3H]21-pTFDBzox-AP photoincorporated in a pharmacologically specific manner into the α and ß subunits of those receptors, with the ß3 subunit photolabeled most efficiently. Importantly, photolabeling by [3H]21-pTFDBzox-AP was inhibited by the positive steroid modulators alphaxalone, pregnanolone and allopregnanolone, but not by inhibitory neurosteroid pregnenolone sulfate or by two potent general anesthetics and GABAAR positive allosteric modulators, etomidate and an anesthetic barbiturate. The latter two ligands bind to sites at subunit interfaces in the GABAAR that are different from those interacting with neurosteroids. 21-pTFDBzox-AP's potency and pharmacological specificity of photolabeling indicate its suitability for characterizing neurosteroid binding sites in native GABAA receptors.


Assuntos
Diazometano/metabolismo , Neurotransmissores/metabolismo , Receptores de GABA-A/metabolismo , Anestésicos , Sítios de Ligação , Humanos , Marcadores de Fotoafinidade , Subunidades Proteicas/metabolismo
12.
Anesthesiology ; 129(5): 959-969, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30052529

RESUMO

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Naphthalene-etomidate, an etomidate analog containing a bulky phenyl ring substituent group, possesses very low γ-aminobutyric acid type A (GABAA) receptor efficacy and acts as an anesthetic-selective competitive antagonist. Using etomidate analogs containing phenyl ring substituents groups that range in volume, we tested the hypothesis that this unusual pharmacology is caused by steric hindrance that reduces binding to the receptor's open state. METHODS: The positive modulatory potencies and efficacies of etomidate and phenyl ring-substituted etomidate analogs were electrophysiology defined in oocyte-expressed α1ß3γ2L GABAA receptors. Their binding affinities to the GABAA receptor's two classes of transmembrane anesthetic binding sites were assessed from their abilities to inhibit receptor labeling by the site-selective photolabels [H]azi-etomidate and tritiated R-5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid. RESULTS: The positive modulatory activities of etomidate and phenyl ring-substituted etomidate analogs progressively decreased with substituent group volume, reflecting significant decreases in both potency (P = 0.005) and efficacy (P < 0.0001). Affinity for the GABAA receptor's two ß - α anesthetic binding sites similarly decreased with substituent group volume (P = 0.003), whereas affinity for the receptor's α - ß/γ - ß sites did not (P = 0.804). Introduction of the N265M mutation, which is located at the ß - α binding sites and renders GABAA receptors etomidate-insensitive, completely abolished positive modulation by naphthalene-etomidate. CONCLUSIONS: Steric hindrance selectively reduces phenyl ring-substituted etomidate analog binding affinity to the two ß - α anesthetic binding sites on the GABAA receptor's open state, suggesting that the binding pocket where etomidate's phenyl ring lies becomes smaller as the receptor isomerizes from closed to open.


Assuntos
Anestésicos Intravenosos/farmacologia , Etomidato/farmacologia , Receptores de GABA/metabolismo , Animais , Técnicas de Cultura de Células , Humanos , Oócitos , Receptores de GABA/efeitos dos fármacos , Xenopus
13.
Anesthesiology ; 127(5): 824-837, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28857763

RESUMO

BACKGROUND: The authors characterized the γ-aminobutyric acid type A receptor pharmacology of the novel etomidate analog naphthalene-etomidate, a potential lead compound for the development of anesthetic-selective competitive antagonists. METHODS: The positive modulatory potencies and efficacies of etomidate and naphthalene-etomidate were defined in oocyte-expressed α1ß3γ2L γ-aminobutyric acid type A receptors using voltage clamp electrophysiology. Using the same technique, the ability of naphthalene-etomidate to reduce currents evoked by γ-aminobutyric acid alone or γ-aminobutyric acid potentiated by etomidate, propofol, pentobarbital, and diazepam was quantified. The binding affinity of naphthalene-etomidate to the transmembrane anesthetic binding sites of the γ-aminobutyric acid type A receptor was determined from its ability to inhibit receptor photoaffinity labeling by the site-selective photolabels [H]azi-etomidate and R-[H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid. RESULTS: In contrast to etomidate, naphthalene-etomidate only weakly potentiated γ-aminobutyric acid-evoked currents and induced little direct activation even at a near-saturating aqueous concentration. It inhibited labeling of γ-aminobutyric acid type A receptors by [H]azi-etomidate and R-[H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid with similar half-maximal inhibitory concentrations of 48 µM (95% CI, 28 to 81 µM) and 33 µM (95% CI, 20 to 54 µM). It also reduced the positive modulatory actions of anesthetics (propofol > etomidate ~ pentobarbital) but not those of γ-aminobutyric acid or diazepam. At 300 µM, naphthalene-etomidate increased the half-maximal potentiating propofol concentration from 6.0 µM (95% CI, 4.4 to 8.0 µM) to 36 µM (95% CI, 17 to 78 µM) without affecting the maximal response obtained at high propofol concentrations. CONCLUSIONS: Naphthalene-etomidate is a very low-efficacy etomidate analog that exhibits the pharmacology of an anesthetic competitive antagonist at the γ-aminobutyric acid type A receptor.


Assuntos
Ligação Competitiva/fisiologia , Etomidato/análogos & derivados , Etomidato/metabolismo , Antagonistas GABAérgicos/metabolismo , Receptores de GABA-A/metabolismo , Animais , Ligação Competitiva/efeitos dos fármacos , Relação Dose-Resposta a Droga , Etomidato/farmacologia , Feminino , Antagonistas GABAérgicos/farmacologia , Naftalenos/química , Naftalenos/metabolismo , Naftalenos/farmacologia , Oócitos , Resultado do Tratamento , Xenopus laevis , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
14.
Methods Mol Biol ; 1598: 157-197, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28508361

RESUMO

Photoaffinity labeling techniques have been used for decades to identify drug binding sites and to study the structural biology of allosteric transitions in transmembrane proteins including pentameric ligand-gated ion channels (pLGIC). In a typical photoaffinity labeling experiment, to identify drug binding sites, UV light is used to introduce a covalent bond between a photoreactive ligand (which upon irradiation at the appropriate wavelength converts to a reactive intermediate) and amino acid residues that lie within its binding site. Then protein chemistry and peptide microsequencing techniques are used to identify these amino acids within the protein primary sequence. These amino acid residues are located within homology models of the receptor to identify the binding site of the photoreactive probe. Molecular modeling techniques are then used to model the binding of the photoreactive probe within the binding site using docking protocols. Photoaffinity labeling directly identifies amino acids that contribute to drug binding sites regardless of their location within the protein structure and distinguishes them from amino acids that are only involved in the transduction of the conformational changes mediated by the drug, but may not be part of its binding site (such as those identified by mutational studies). Major limitations of photoaffinity labeling include the availability of photoreactive ligands that faithfully mimic the properties of the parent molecule and protein preparations that supply large enough quantities suitable for photoaffinity labeling experiments. When the ligand of interest is not intrinsically photoreactive, chemical modifications to add a photoreactive group to the parent drug, and pharmacological evaluation of these chemical modifications become necessary. With few exceptions, expression and affinity-purification of proteins are required prior to photolabeling. Methods to isolate milligram quantities of highly enriched pLGIC suitable for photoaffinity labeling experiments have been developed. In this chapter, we discuss practical aspects of experimental strategies to identify allosteric modulator binding sites in pLGIC using photoaffinity labeling.


Assuntos
Descoberta de Drogas , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Ligantes , Marcadores de Fotoafinidade , Proteômica , Sítio Alostérico , Animais , Sítios de Ligação , Descoberta de Drogas/métodos , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Proteômica/métodos , Relação Estrutura-Atividade
15.
Front Mol Neurosci ; 8: 71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635524

RESUMO

Nicotine addiction, the result of tobacco use, leads to over six million premature deaths world-wide per year, a number that is expected to increase by a third within the next two decades. While more than half of smokers want and attempt to quit, only a small percentage of smokers are able to quit without pharmacological interventions. Therefore, over the past decades, researchers in academia and the pharmaceutical industry have focused their attention on the development of more effective smoking cessation therapies, which is now a growing 1.9 billion dollar market. Because the role of neuronal nicotinic acetylcholine receptors (nAChR) in nicotine addiction is well established, nAChR based therapeutics remain the leading strategy for smoking cessation. However, the development of neuronal nAChR drugs that are selective for a nAChR subpopulation is challenging, and only few neuronal nAChR drugs are clinically available. Among the many neuronal nAChR subtypes that have been identified in the brain, the α4ß2 subtype is the most abundant and plays a critical role in nicotine addiction. Here, we review the role of neuronal nAChRs, especially the α4ß2 subtype, in the development and treatment of nicotine addiction. We also compare available smoking cessation medications and other nAChR orthosteric and allosteric ligands that have been developed with emphasis on the difficulties faced in the development of clinically useful compounds with high nAChR subtype selectivity.

16.
J Biol Chem ; 290(38): 23432-46, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26229099

RESUMO

In the process of developing safer general anesthetics, isomers of anesthetic ethers and barbiturates have been discovered that act as convulsants and inhibitors of γ-aminobutyric acid type A receptors (GABAARs) rather than potentiators. It is unknown whether these convulsants act as negative allosteric modulators by binding to the intersubunit anesthetic-binding sites in the GABAAR transmembrane domain (Chiara, D. C., Jayakar, S. S., Zhou, X., Zhang, X., Savechenkov, P. Y., Bruzik, K. S., Miller, K. W., and Cohen, J. B. (2013) J. Biol. Chem. 288, 19343-19357) or to known convulsant sites in the ion channel or extracellular domains. Here, we show that S-1-methyl-5-propyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (S-mTFD-MPPB), a photoreactive analog of the convulsant barbiturate S-MPPB, inhibits α1ß3γ2 but potentiates α1ß3 GABAAR responses. In the α1ß3γ2 GABAAR, S-mTFD-MPPB binds in the transmembrane domain with high affinity to the γ(+)-ß(-) subunit interface site with negative energetic coupling to GABA binding in the extracellular domain at the ß(+)-α(-) subunit interfaces. GABA inhibits S-[(3)H]mTFD-MPPB photolabeling of γ2Ser-280 (γM2-15') in this site. In contrast, within the same site GABA enhances photolabeling of ß3Met-227 in ßM1 by an anesthetic barbiturate, R-[(3)H]methyl-5-allyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), which differs from S-mTFD-MPPB in structure only by chirality and two hydrogens (propyl versus allyl). S-mTFD-MPPB and R-mTFD-MPAB are predicted to bind in different orientations at the γ(+)-ß(-) site, based upon the distance in GABAAR homology models between γ2Ser-280 and ß3Met-227. These results provide an explanation for S-mTFD-MPPB inhibition of α1ß3γ2 GABAAR function and provide a first demonstration that an intersubunit-binding site in the GABAAR transmembrane domain binds negative and positive allosteric modulators.


Assuntos
Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Células HEK293 , Humanos , Estrutura Terciária de Proteína , Receptores de GABA-A/genética
17.
J Biol Chem ; 289(40): 27456-68, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25086038

RESUMO

Propofol acts as a positive allosteric modulator of γ-aminobutyric acid type A receptors (GABAARs), an interaction necessary for its anesthetic potency in vivo as a general anesthetic. Identifying the location of propofol-binding sites is necessary to understand its mechanism of GABAAR modulation. [(3)H]2-(3-Methyl-3H-diaziren-3-yl)ethyl 1-(phenylethyl)-1H-imidazole-5-carboxylate (azietomidate) and R-[(3)H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), photoreactive analogs of 2-ethyl 1-(phenylethyl)-1H-imidazole-5-carboxylate (etomidate) and mephobarbital, respectively, have identified two homologous but pharmacologically distinct classes of intersubunit-binding sites for general anesthetics in the GABAAR transmembrane domain. Here, we use a photoreactive analog of propofol (2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol ([(3)H]AziPm)) to identify propofol-binding sites in heterologously expressed human α1ß3 GABAARs. Propofol, AziPm, etomidate, and R-mTFD-MPAB each inhibited [(3)H]AziPm photoincorporation into GABAAR subunits maximally by ∼ 50%. When the amino acids photolabeled by [(3)H]AziPm were identified by protein microsequencing, we found propofol-inhibitable photolabeling of amino acids in the ß3-α1 subunit interface (ß3Met-286 in ß3M3 and α1Met-236 in α1M1), previously photolabeled by [(3)H]azietomidate, and α1Ile-239, located one helical turn below α1Met-236. There was also propofol-inhibitable [(3)H]AziPm photolabeling of ß3Met-227 in ßM1, the amino acid in the α1-ß3 subunit interface photolabeled by R-[(3)H]mTFD-MPAB. The propofol-inhibitable [(3)H]AziPm photolabeling in the GABAAR ß3 subunit in conjunction with the concentration dependence of inhibition of that photolabeling by etomidate or R-mTFD-MPAB also establish that each anesthetic binds to the homologous site at the ß3-ß3 subunit interface. These results establish that AziPm as well as propofol bind to the homologous intersubunit sites in the GABAAR transmembrane domain that binds etomidate or R-mTFD-MPAB with high affinity.


Assuntos
Propofol/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Sítios de Ligação , Humanos , Cinética , Marcadores de Fotoafinidade , Propofol/análogos & derivados , Propofol/química
18.
Mol Cell Neurosci ; 63: 1-12, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25168001

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide found at synapses throughout the central and autonomic nervous system. We previously found that PACAP engages a selective G-protein coupled receptor (PAC1R) on ciliary ganglion neurons to rapidly enhance quantal acetylcholine (ACh) release from presynaptic terminals via neuronal nitric oxide synthase (NOS1) and cyclic AMP/protein kinase A (PKA) dependent processes. Here, we examined how PACAP stimulates NO production and targets resultant outcomes to synapses. Scavenging extracellular NO blocked PACAP-induced plasticity supporting a retrograde (post- to presynaptic) NO action on ACh release. Live-cell imaging revealed that PACAP stimulates NO production by mechanisms requiring NOS1, PKA and Ca(2+) influx. Ca(2+)-permeable nicotinic ACh receptors composed of α7 subunits (α7-nAChRs) are potentiated by PKA-dependent PACAP/PAC1R signaling and were required for PACAP-induced NO production and synaptic plasticity since both outcomes were drastically reduced following their selective inhibition. Co-precipitation experiments showed that NOS1 associates with α7-nAChRs, many of which are perisynaptic, as well as with heteromeric α3*-nAChRs that generate the bulk of synaptic activity. NOS1-nAChR physical association could facilitate NO production at perisynaptic and adjacent postsynaptic sites to enhance focal ACh release from juxtaposed presynaptic terminals. The synaptic outcomes of PACAP/PAC1R signaling are localized by PKA anchoring proteins (AKAPs). PKA regulatory-subunit overlay assays identified five AKAPs in ganglion lysates, including a prominent neuronal subtype. Moreover, PACAP-induced synaptic plasticity was selectively blocked when PKA regulatory-subunit binding to AKAPs was inhibited. Taken together, our findings indicate that PACAP/PAC1R signaling coordinates nAChR, NOS1 and AKAP activities to induce targeted, retrograde plasticity at autonomic synapses. Such coordination has broad relevance for understanding the control of autonomic synapses and consequent visceral functions.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Plasticidade Neuronal , Óxido Nítrico Sintase Tipo I/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores Nicotínicos/metabolismo , Sinapses/metabolismo , Animais , Sistema Nervoso Autônomo/citologia , Sistema Nervoso Autônomo/metabolismo , Sistema Nervoso Autônomo/fisiologia , Cálcio/metabolismo , Células Cultivadas , Embrião de Galinha , Neurônios/metabolismo , Neurônios/fisiologia , Óxido Nítrico/metabolismo , Ligação Proteica , Sinapses/fisiologia
19.
J Mol Neurosci ; 53(3): 480-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24158732

RESUMO

For almost 30 years, photoaffinity labeling and protein microsequencing techniques have been providing novel insights about the structure of nicotinic acetylcholine receptors (nAChR) and the diversity of nAChR drug binding sites. Photoaffinity labeling allows direct identification of amino acid residues contributing to a drug binding site without prior knowledge of the location of the binding site within the nAChR or the orientation of the ligand within the binding site. It also distinguishes amino acids that contribute to allosteric binding sites from those involved in allosteric modulation of gating. While photoaffinity labeling was used initially to identify amino acids contributing to the agonist binding sites and the ion channel, it has been used recently to identify binding sites for allosteric modulators at subunit interfaces in the extracellular and the transmembrane domains, and within a subunit's transmembrane helix bundle. In this article, we review the different types of photoaffinity probes that have been used and the various binding sites that have been identified within the structure of nAChR, with emphasis on our recent studies of allosteric modulator binding sites.


Assuntos
Marcadores de Fotoafinidade/química , Receptores Nicotínicos/química , Sítio Alostérico , Sequência de Aminoácidos , Animais , Colinérgicos/química , Colinérgicos/farmacologia , Humanos , Dados de Sequência Molecular , Ligação Proteica , Receptores Nicotínicos/metabolismo
20.
J Biol Chem ; 288(27): 19343-57, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23677991

RESUMO

GABA type A receptors (GABAAR), the brain's major inhibitory neurotransmitter receptors, are the targets for many general anesthetics, including volatile anesthetics, etomidate, propofol, and barbiturates. How such structurally diverse agents can act similarly as positive allosteric modulators of GABAARs remains unclear. Previously, photoreactive etomidate analogs identified two equivalent anesthetic-binding sites in the transmembrane domain at the ß(+)-α(-) subunit interfaces, which also contain the GABA-binding sites in the extracellular domain. Here, we used R-[(3)H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB), a potent stereospecific barbiturate anesthetic, to photolabel expressed human α1ß3γ2 GABAARs. Protein microsequencing revealed that R-[(3)H]mTFD-MPAB did not photolabel the etomidate sites at the ß(+)-α(-) subunit interfaces. Instead, it photolabeled sites at the α(+)-ß(-) and γ(+)-ß(-) subunit interfaces in the transmembrane domain. On the (+)-side, α1M3 was labeled at Ala-291 and Tyr-294 and γ2M3 at Ser-301, and on the (-)-side, ß3M1 was labeled at Met-227. These residues, like those in the etomidate site, are located at subunit interfaces near the synaptic side of the transmembrane domain. The selectivity of R-etomidate for the ß(+)-α(-) interface relative to the α(+)-ß(-)/γ(+)-ß(-) interfaces was >100-fold, whereas that of R-mTFD-MPAB for its sites was >50-fold. Each ligand could enhance photoincorporation of the other, demonstrating allosteric interactions between the sites. The structural heterogeneity of barbiturate, etomidate, and propofol derivatives is accommodated by varying selectivities for these two classes of sites. We hypothesize that binding at any of these homologous intersubunit sites is sufficient for anesthetic action and that this explains to some degree the puzzling structural heterogeneity of anesthetics.


Assuntos
Anestésicos Intravenosos/química , Barbitúricos/química , Etomidato/química , Receptores de GABA-A/química , Anestésicos Intravenosos/metabolismo , Barbitúricos/metabolismo , Sítios de Ligação , Etomidato/metabolismo , Células HEK293 , Humanos , Ligantes , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Subunidades Proteicas , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...