Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 189: 106602, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408546

RESUMO

The current research was designed to investigate the antibacterial activity of probiotic bacteria mediated cadmium oxide nanoparticles (CdO NPs) on common fish pathogenic bacteria like Serratia marcescens, Aeromonas hydrophila, Vibrio harveyi, and V. parahaemolyticus. CdO NPs were synthesized using probiotic bacteria as follows: Lactobacillus species with different precursor of cadmium sulfate concentrations (5, 10, and 20 mM). The average crystalline sizes of the CdO NPs were determined based on the XRD patterns using the Debye-Scherrer equation for different precursor concentrations. Specifically, sizes of 40, 48, and 67 nm were found at concentrations of 5, 10, and 20 mM, respectively. The antibacterial efficacy of CdO NPs was estimated using a well diffusion assay, which demonstrated the best efficacy of 20 mM CdO NPs against all pathogens. AFM analysis of nanoparticle-treated and untreated biofilms was performed to further validate the antibacterial effect. Antibacterial activity of CdO nanoparticles synthesized at varying concentrations (5, 10, and 20 mM) against fish pathogens (S. marcescens, A. hydrophila, V. harveyi, and V. parahaemolyticus). The results indicated the highest inhibitory effect of 20 mM CdO NPs across all concentrations (30, 60, and 90 µg/mL), demonstrating significant inhibition against S. marcescens. These findings will contribute to the development of novel strategies for combating aquatic diseases and advancing aquaculture health management practices.


Assuntos
Compostos de Cádmio , Nanopartículas Metálicas , Nanopartículas , Animais , Óxidos/química , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Peixes , Nanopartículas Metálicas/química
2.
Int J Biol Macromol ; 242(Pt 4): 125025, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245774

RESUMO

Nanoparticles (NPs) have gained recognition for diagnosis, drug delivery, and therapy in fatal diseases. This review focuses on the benefits of green synthesis of bioinspired NPs using various plant extract (containing various biomolecules such as sugars, proteins, and other phytochemical compounds) and their therapeutic application in cardiovascular diseases (CVDs). Multiple factors including inflammation, mitochondrial and cardiomyocyte mutations, endothelial cell apoptosis, and administration of non-cardiac drugs, can trigger the cause of cardiac disorders. Furthermore, the interruption of reactive oxygen species (ROS) synchronization from mitochondria causes oxidative stress in the cardiac system, leading to chronic diseases such as atherosclerosis and myocardial infarction. NPs can decrease the interaction with biomolecules and prevent the incitement of ROS. Understanding this mechanism can pave the way for using green synthesized elemental NPs to reduce the risk of CVD. This review delivers information on the different methods, classifications, mechanisms and benefits of using NPs, as well as the formation and progression of CVDs and their effects on the body.


Assuntos
Doenças Cardiovasculares , Nanopartículas , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Extratos Vegetais/química , Nanopartículas/química , Estresse Oxidativo , Miócitos Cardíacos/metabolismo
3.
Biomimetics (Basel) ; 7(4)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36412717

RESUMO

Despite many efforts over the last few decades, cardiac-based drug delivery systems are experiencing major problems, such as the effective delivery of the precise amount of a drug. In the current study, an effort has been made to prepare a nano-herbformulation (NHF) to overcome the major problem of conventional intervention. Copper oxide-based NHF was prepared using plant extract of Alternanthera sessilis and characterized using physicochemical techniques such as Transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Dynamic light scattering (DLS), UV-Vis spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). TEM analysis revealed that spherical NHF obtained of size 20-50 nm. In addition, XRD and FTIR confirmed the presence of phytochemicals with biological properties over the surface of copper oxide-based NHF. It was demonstrated that dose-dependent antiapoptotic activity was shown against DOX-induced cardiomyocytes, where ROS levels were significantly reduced to 0.29% from 37.99%. The results of the flow cytometry analysis using PI and Annexin staining further confirmed the antiapoptotic activity of NHF against DOX-induced cardiomyocytes by ROS scavenging. Thus, NHF might be used for cardiovascular disease treatment.

4.
Molecules ; 27(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36364115

RESUMO

The potentiality of nanomedicine in the cancer treatment being widely recognized in the recent years. In the present investigation, the synergistic effects of chitosan-modified selenium nanoparticles loaded with paclitaxel (PTX-chit-SeNPs) were studied. These selenium nanoparticles were tested for drug release analysis at a pH of 7.4 and 5.5, and further characterized using FTIR, DLS, zeta potential, and TEM to confirm their morphology, and the encapsulation of the drug was carried out using UPLC analysis. Quantitative evaluation of anti-cancer properties was performed via MTT analysis, apoptosis, gene expression analysis, cell cycle arrest, and over-production of ROS. The unique combination of phytochemicals from the seed extract, chitosan, paclitaxel, and selenium nanoparticles can be effectively utilized to combat cancerous cells. The production of the nanosystem has been demonstrated to be cost-effective and have unique characteristics, and can be utilized for improving future diagnostic approaches.


Assuntos
Quitosana , Nanopartículas , Selênio , Neoplasias do Colo do Útero , Feminino , Humanos , Paclitaxel/química , Selênio/química , Quitosana/química , Neoplasias do Colo do Útero/tratamento farmacológico , Linhagem Celular Tumoral , Nanopartículas/química
5.
Pharmaceutics ; 14(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36145617

RESUMO

Carbon nanodots (CNDs) are advanced nanomaterials with a size of 2-10 nm and are considered zero-dimensional carbonaceous materials. CNDs have received great attention in the area of cancer theranostics. The majority of review articles have shown the improvement of CNDs for use in cancer therapy and bioimaging applications. However, there is a minimal number of consolidated studies on the currently developed doped CNDs that are used in various ways in cancer therapies. Hence, in this review, we discuss the current developments in different types of heteroatom elements/metal ion-doped CNDs along with their preparations, physicochemical and biological properties, multimodal-imaging, and emerging applications in image-guided photodynamic therapies for cancer.

6.
Environ Res ; 212(Pt A): 113153, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35341753

RESUMO

This research reports on the production of copper oxide nanoparticles (CuO NPs) through the green synthesis method using Azadirachta indica (Ai) flower extract. Synthesized Ai-CuO NPs are characterized by Zeta Potential, TGA, SEM and TEM analysis. The Ai-CuO NPs gave a maximum peak at 270 nm. As per XRD studies, the Ai-CuO NPs obtained were crystalline. FTIR spectrum Ai-CuO NPs showed the presence of functional groups like the O-H group, aromatic group, etc. TEM and SEM assist in investigating the size and morphology of the Ai-CuO NPs, which were spherical and varied in size between 10.11 nm and 17.54 nm. EDAX showed that Ai-CuO NPs were pure with no impurities. The synthesized Ai-CuO NPs were then analyzed for their cytotoxicity at various concentrations (5, 10, 20, 30, 40 and 50 µg/mL) against H9c2 cardiomyocyte cells using MTT assay. DOX-induced H9c2 cell damage of apoptosis and ROS. The nanoparticle formed by Ai-CuO was cured with different concentrations (5, 10 and 20 µg/mL). In zebrafish, 48 hpf and 72 hpf were measured at 75 µM to reduce dysfunction and mortality during organ development. These results can have a beneficial impact on eco-toxicological effects.


Assuntos
Azadirachta , Nanopartículas Metálicas , Nanopartículas , Animais , Cobre/química , Cobre/toxicidade , Desenvolvimento Embrionário , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Miócitos Cardíacos , Nanopartículas/toxicidade , Óxidos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...