Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Neuroinflammation ; 13(1): 169, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27357191

RESUMO

BACKGROUND: Vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase-activating polypeptide (PACAP) are two highly homologous neuropeptides. In vitro and ex vivo experiments repeatedly demonstrate that these peptides exert pronounced immunomodulatory (primarily anti-inflammatory) actions which are mediated by common VPAC1 and VPAC2 G protein-coupled receptors. In agreement, we have shown that mice deficient in PACAP ligand or VPAC2 receptors exhibit exacerbated experimental autoimmune encephalomyelitis (EAE). However, we observed that VIP-deficient mice are unexpectedly resistant to EAE, suggesting a requirement for this peptide at some stage of disease development. Here, we investigated the involvement of VPAC1 in the development of EAE using a VPAC1-deficient mouse model. METHODS: EAE was induced in wild-type (WT) and VPAC1 knockout (KO) mice using myelin oligodendrocyte glycoprotein 35-55 (MOG35-55), and clinical scores were assessed continuously over 30 days. Immune responses in the spinal cords were determined by histology, real-time PCR and immunofluorescence, and in the draining lymph nodes by antigen-recall assays. The contribution of VPAC1 expression in the immune system to the development of EAE was evaluated by means of adoptive transfer and bone marrow chimera experiments. In other experiments, VPAC1 receptor analogs were given to WT mice. RESULTS: MOG35-55-induced EAE was ameliorated in VPAC1 KO mice compared to WT mice. The EAE-resistant phenotype of VPAC1 KO mice correlated with reduced central nervous system (CNS) histopathology and cytokine expression in the spinal cord. The immunization phase of EAE appeared to be unimpaired because lymph node cells from EAE-induced VPAC1 KO mice stimulated in vitro with MOG exhibited robust proliferative and Th1/Th17 responses. Moreover, lymph node and spleen cells from KO mice were fully capable of inducing EAE upon transfer to WT recipients. In contrast, WT cells from MOG-immunized mice did not transfer the disease when administered to VPAC1 KO recipients, implicating a defect in the effector phase of the disease. Bone marrow chimera studies suggested that the resistance of VPAC1-deficient mice was only minimally dependent on the expression of this receptor in the immunogenic/hematopoietic compartment. Consistent with this, impaired spinal cord inductions of several chemokine mRNAs were observed in VPAC1 KO mice. Finally, treatment of WT mice with the VPAC1 receptor antagonist PG97-269 before, but not after, EAE induction mimicked the clinical phenotype of VPAC1 KO mice. CONCLUSIONS: VPAC1 gene loss impairs the development of EAE in part by preventing an upregulation of CNS chemokines and invasion of inflammatory cells into the CNS. Use of VPAC1 antagonists in WT mice prior to EAE induction also support a critical role for VPAC1 signaling for the development of EAE.


Assuntos
Citocinas/metabolismo , Encefalomielite Autoimune Experimental/complicações , Encefalomielite Autoimune Experimental/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/deficiência , Transferência Adotiva , Animais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Citocinas/genética , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Feminino , Adjuvante de Freund/toxicidade , Laminina/metabolismo , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/toxicidade , Fragmentos de Peptídeos/toxicidade , RNA Mensageiro/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/genética , Medula Espinal/metabolismo , Medula Espinal/patologia , Células Th1/metabolismo , Células Th1/patologia , Células Th17/metabolismo , Células Th17/patologia , Fatores de Tempo
3.
J Comp Neurol ; 524(18): 3827-3848, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27197019

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP, gene name Adcyap1) regulates a wide variety of neurological and physiological functions, including metabolism and cognition, and plays roles in of multiple forms of stress. Because of its preferential expression in nerve fibers, it has often been difficult to trace and identify the endogenous sources of the peptide in specific populations of neurons. Here, we introduce a transgenic mouse line that harbors in its genome a bacterial artificial chromosome containing an enhanced green fluorescent protein (EGFP) expression cassette inserted upstream of the PACAP ATG translation initiation codon. Analysis of expression in brain sections of these mice using a GFP antibody reveals EGFP expression in distinct neuronal perikarya and dendritic arbors in several major brain regions previously reported to express PACAP from using a variety of approaches, including radioimmunoassay, in situ hybridization, and immunohistochemistry with and without colchicine. EGFP expression in neuronal perikarya was modulated in a manner similar to PACAP gene expression in motor neurons after peripheral axotomy in the ipsilateral facial motor nucleus in the brainstem, providing an example in which the transgene undergoes proper regulation in vivo. These mice and the high-resolution map obtained are expected to be useful in understanding the anatomical patterns of PACAP expression and its plasticity in the mouse. J. Comp. Neurol. 524:3827-3848, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Camundongos Transgênicos , Modelos Animais , Neurônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Animais , Axotomia , Encéfalo/citologia , Encéfalo/metabolismo , Traumatismos do Nervo Facial/metabolismo , Traumatismos do Nervo Facial/patologia , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Imuno-Histoquímica , Masculino , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Medula Espinal/citologia , Medula Espinal/metabolismo
4.
J Appl Physiol (1985) ; 114(6): 734-41, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23329815

RESUMO

To determine how astrocytic leptin signaling regulates the physiological response of mice to diet-induced obesity (DIO), we performed metabolic analyses and hypothalamic leptin signaling assays on astrocytic leptin-receptor knockout (ALKO) mice in which astrocytes lack functional leptin receptor (ObR) signaling. ALKO mice and wild-type (WT) littermate controls were studied at different stages of DIO with measurement of body wt, percent fat, metabolic activity, and biochemical parameters. When fed regular chow, the ALKO mice had similar body wt, percent fat, food intake, heat dissipation, respiratory exchange ratio, and activity as their WT littermates. There was no change in blood concentrations of triglyceride, soluble leptin receptor (sObR), mRNA for leptin and uncoupling protein 1 (UCP1) in adipose tissue, and insulin sensitivity. Unexpectedly, in response to a high-fat diet the ALKO mice had attenuated hyperleptinemia and sObR, a lower level of leptin mRNA in subcutaneous fat, and a paradoxical increase in UCP1 mRNA. Thus, ALKO mice did not show the worsening of obesity that occurs with normal WT mice and the neuronal ObR mutation that results in morbid obesity. The findings are consistent with a competing, counterregulatory model between neuronal and astrocytic leptin signaling.


Assuntos
Astrócitos/metabolismo , Dieta Hiperlipídica , Hipotálamo/metabolismo , Leptina/metabolismo , Obesidade/prevenção & controle , Receptores para Leptina/deficiência , Adiposidade , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Peso Corporal , Modelos Animais de Doenças , Metabolismo Energético , Genótipo , Insulina/sangue , Canais Iônicos/genética , Canais Iônicos/metabolismo , Leptina/sangue , Leptina/genética , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Atividade Motora , Obesidade/sangue , Obesidade/genética , Fenótipo , RNA Mensageiro/sangue , Receptores para Leptina/sangue , Receptores para Leptina/genética , Transdução de Sinais , Gordura Subcutânea/metabolismo , Fatores de Tempo , Triglicerídeos/sangue , Proteína Desacopladora 1
5.
J Cell Physiol ; 228(7): 1610-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23359322

RESUMO

Hyperleptinemia is usually associated with obesity and leptin resistance. Endothelial cell leptin receptor knockout (ELKO) mice without a signaling membrane-bound leptin receptor in endothelia, however, have profound hyperleptinemia without signs of leptin resistance. Leptin mRNA in adipose tissue was unchanged. To test the hypothesis that the ELKO mutation results in delayed degradation and slowed excretion, we determined the kinetics of leptin transfer in groups of ELKO and wildtype mice after intravenous bolus injection of (125) I-leptin and the reference substance (131) I-albumin. The degradation pattern of (125) I-leptin in serum and brain homogenates at different time points between 10 and 60 min was measured by HPLC and acid precipitation. Although ELKO mice had reduced uptake of (125) I-leptin uptake by the brain and several peripheral organs, leptin was more stable in blood and tissue. There was no change in the rate of renal excretion. ELISA showed that serum soluble leptin receptor, known to antagonize leptin transport, had a 400-fold increase, probably contributing to the hyperleptinemia and reduced tissue uptake. Thus, the ELKO mutation unexpectedly increased the stability of leptin but suppressed its tissue uptake. These changes probably contribute to the known partial resistance of the ELKO mice to diet-induced obesity.


Assuntos
Leptina/sangue , Receptores para Leptina/deficiência , Tecido Adiposo/metabolismo , Animais , Transporte Biológico Ativo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Rim/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Albumina Sérica/metabolismo , Distribuição Tecidual
6.
J Mol Neurosci ; 49(3): 523-30, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23180096

RESUMO

Both proconvulsive and anticonvulsive roles of leptin have been reported, suggesting cell-specific actions of leptin in different models of seizure and epilepsy. The goal of our study was to determine the regulation and function of astrocytic leptin receptors in a mouse model of epilepsy and glutamate-induced cytotoxicity. We show that in pilocarpine-challenged mice developing epilepsy with recurrent seizures after a latent period of 2 weeks, hippocampal leptin receptor (ObR) immunofluorescence was increased at 6 weeks. This was more pronounced in astrocytes than in neurons. In cultured astrocytes, glutamate increased ObRa and ObRb expression, whereas leptin pretreatment attenuated glial cytotoxicity by excess glutamate, reflected by better preserved adenosine triphosphate production. The protective role of astrocytic leptin signaling is further supported by the higher lethality of the astrocyte-specific leptin receptor knockout mice in the initial phase of seizure production. Thus, leptin signaling in astrocytes plays a protective role against seizure, and the effects are at least partially mediated by attenuation of glutamate toxicity. Astrocytic leptin signaling, therefore, may be a novel therapeutic target.


Assuntos
Astrócitos/fisiologia , Epilepsia/prevenção & controle , Ácido Glutâmico/toxicidade , Leptina/fisiologia , Neurotoxinas/toxicidade , Animais , Astrocitoma/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Convulsivantes/toxicidade , Epilepsia/induzido quimicamente , Epilepsia/patologia , Epilepsia/fisiopatologia , Feminino , Regulação da Expressão Gênica , Proteína Glial Fibrilar Ácida/biossíntese , Proteína Glial Fibrilar Ácida/genética , Gliose/etiologia , Gliose/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Leptina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Pilocarpina/toxicidade , Receptores para Leptina/biossíntese , Receptores para Leptina/deficiência , Receptores para Leptina/genética , Receptores para Leptina/fisiologia , Recidiva , Transdução de Sinais , Regulação para Cima
7.
Cell Physiol Biochem ; 30(6): 1351-62, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23095975

RESUMO

BACKGROUND: Recent findings from our laboratory have demonstrated that glucose-stimulated insulin secretion (GSIS) involves interplay between a variety of small G proteins belonging to the Rho (e.g., Cdc42 and Rac1) and ADP-ribosylation factor (e.g., Arf6) subfamilies. Using immunological, pharmacological and molecular biological approaches, we have also identified guanine nucleotide exchange factors (GEFs) for Rac1 (e.g., Tiam1) and Arf6 (e.g., ARNO) in clonal INS-1 832/13 cells, normal rat islets and human islets. As a logical extension to these studies, we investigated, herein, potential downstream signaling steps involved in Arf6/ARNO-mediated GSIS. METHODS: Using a selective pharmacological inhibitor of ARNO/Arf6 signaling axis (e.g., secinH3) we assessed regulatory roles for Arf6/ARNO in promoting phospholipase D (PLD), phagocytic NADPH oxidase (Nox2), reactive oxygen species (ROS), extracellular-regulated kinases (ERK 1/2) and cofilin (actin-severing protein] signaling steps in clonal INS-1 832/13 cells. RESULTS: Our data suggested a marked inhibition by secinH3 of glucose-induced PLD activation, ERK1/2 phosphorylation and dephosphorylation of cofilin, suggesting that Arf6/ ARNO signaling mediates PLD, ERK1/2 and cofilin activation in beta-cells. In addition, secinH3 blocked glucose-induced Nox2 activation and associated ROS generation, thus placing Nox downstream to Arf6/ARNO signaling step. Lastly, we also demonstrate a significantly higher cofilin phosphorylation (inactive) in islets derived from type 2 diabetic human donors as well as the Zucker Diabetic Fatty (ZDF) rat, a model for type 2 diabetes. CONCLUSION: Together, our current findings identify signaling steps downstream to ARNO/Arf6 axis leading to insulin secretion.


Assuntos
Glucose/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Glicoproteínas de Membrana/fisiologia , NADPH Oxidases/fisiologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP , Fatores de Despolimerização de Actina/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , Proteínas Ativadoras de GTPase , Humanos , Secreção de Insulina , Sistema de Sinalização das MAP Quinases , Masculino , Pessoa de Meia-Idade , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Fagócitos/enzimologia , Fosfolipase D/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Zucker , Triazóis/farmacologia
8.
Ann N Y Acad Sci ; 1264: 64-71, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22530983

RESUMO

Leptin, an adipocyte-derived cytokine, crosses the blood-brain barrier to act on many regions of the central nervous system (CNS). It participates in the regulation of energy balance, inflammatory processes, immune regulation, synaptic formation, memory condensation, and neurotrophic activities. This review focuses on the newly identified actions of leptin on astrocytes. We first summarize the distribution of leptin receptors in the brain, with a focus on the hypothalamus, where the leptin receptor is known to mediate essential feeding suppression activities, and on the hippocampus, where leptin facilitates memory, reduces neurodegeneration, and plays a dual role in seizures. We will then discuss regulation of the nonneuronal leptin system in obesity. Its relationship with neuronal leptin signaling is illustrated by in vitro assays in primary astrocyte culture and by in vivo studies on mice after pretreatment with a glial metabolic inhibitor or after cell-specific deletion of intracellular signaling leptin receptors. Overall, the glial leptin system shows robust regulation and plays an essential role in obesity. Strategies to manipulate this nonneuronal leptin signaling may have major clinical impact.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Leptina/metabolismo , Receptores para Leptina/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Metabolismo Energético , Hipocampo/metabolismo , Humanos , Hipotálamo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade
9.
Diabetes ; 60(11): 2843-52, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21911753

RESUMO

OBJECTIVE: To determine the subunit expression and functional activation of phagocyte-like NADPH oxidase (Nox), reactive oxygen species (ROS) generation and caspase-3 activation in the Zucker diabetic fatty (ZDF) rat and diabetic human islets. RESEARCH DESIGN AND METHODS: Expression of core components of Nox was quantitated by Western blotting and densitometry. ROS levels were quantitated by the 2',7'-dichlorofluorescein diacetate method. Rac1 activation was quantitated using the gold-labeled immunosorbent assay kit. RESULTS: Levels of phosphorylated p47(phox), active Rac1, Nox activity, ROS generation, Jun NH(2)-terminal kinase (JNK) 1/2 phosphorylation, and caspase-3 activity were significantly higher in the ZDF islets than the lean control rat islets. Chronic exposure of INS 832/13 cells to glucolipotoxic conditions resulted in increased JNK1/2 phosphorylation and caspase-3 activity; such effects were largely reversed by SP600125, a selective inhibitor of JNK. Incubation of normal human islets with high glucose also increased the activation of Rac1 and Nox. Lastly, in a manner akin to the ZDF diabetic rat islets, Rac1 expression, JNK1/2, and caspase-3 activation were also significantly increased in diabetic human islets. CONCLUSIONS: We provide the first in vitro and in vivo evidence in support of an accelerated Rac1-Nox-ROS-JNK1/2 signaling pathway in the islet ß-cell leading to the onset of mitochondrial dysregulation in diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/fisiopatologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Hiperglicemia/metabolismo , Ilhotas Pancreáticas/enzimologia , Isoenzimas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Ratos Zucker , Transdução de Sinais/efeitos dos fármacos , Técnicas de Cultura de Tecidos
10.
Biochem Pharmacol ; 81(8): 1016-27, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21276423

RESUMO

Glucose-stimulated insulin secretion [GSIS] involves interplay between small G-proteins and their regulatory factors. Herein, we tested the hypothesis that Arf nucleotide binding site opener [ARNO], a guanine nucleotide-exchange factor [GEF] for the small G-protein Arf6, mediates the functional activation of Arf6, and that ARNO/Arf6 signaling axis, in turn, controls the activation of Cdc42 and Rac1, which have been implicated in GSIS. Molecular biological [i.e., expression of inactive mutants or siRNA] and pharmacological approaches were employed to assess the roles for ARNO/Arf6 signaling pathway in insulin secretion in normal rat islets and INS 832/13 cells. Degrees of activation of Arf6 and Cdc42/Rac1 were quantitated by GST-GGA3 and PAK-1 kinase pull-down assays, respectively. ARNO is expressed in INS 832/13 cells, rat islets and human islets. Expression of inactive mutants of Arf6 [Arf6-T27N] or ARNO [ARNO-E156K] or siRNA-ARNO markedly reduced GSIS in isolated ß-cells. SecinH3, a selective inhibitor of ARNO/Arf6 signaling axis, also inhibited GSIS in INS 832/13 cells and rat islets. Stimulatory concentrations of glucose promoted Arf6 activation, which was inhibited by secinH3 or siRNA-ARNO, suggesting that ARNO/Arf6 signaling cascade is necessary for GSIS. SecinH3 or siRNA-ARNO also inhibited glucose-induced activation of Cdc42 and Rac1 suggesting that ARNO/Arf6 might be upstream to Cdc42 and Rac1 activation steps, which are necessary for GSIS. Lastly, co-immunoprecipitation and confocal microscopic studies suggested increased association between Arf6 and ARNO in glucose-stimulated ß-cells. These findings provide the first evidence to implicate ARNO in the sequential activation of Arf6, Cdc42 and Rac1 culminating in GSIS.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas Ativadoras de GTPase/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Animais , Técnicas de Cultura de Células , Linhagem Celular , Imunofluorescência , Proteínas Ativadoras de GTPase/genética , Glucose/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoprecipitação , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Microscopia Confocal , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Transfecção
11.
Islets ; 3(2): 48-57, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21346419

RESUMO

Isoprenylcysteine carboxyl methyltransferase (ICMT) catalyzes the post-translational methylation of C-terminal cysteines of isoprenylated proteins, including small G-proteins and the γ-subunits of heterotrimeric G-proteins. It is widely felt that carboxymethylation promotes efficient membrane association of the methylated proteins and specific protein-protein interactions. In the current study, we tested the hypothesis that ICMT-mediated carboxymethylation of specific proteins (e.g., Rac1) plays a regulatory role in glucose-stimulated insulin secretion (GSIS). Western blot analysis indicated that lCMT is expressed and predominantly membrane associated in INS 832/13 ß-cells. siRNA-mediated knockdown of endogenous expression of ICMT markedly attenuated glucose, but not KCl-induced insulin secretion. These findings were further supported by pharmacological observations, which suggested a marked reduction in glucose-, but not KCl-stimulated insulin secretion by acetyl farnesyl cysteine (AFC), a selective inhibitor of ICMT. In addition, glucose-induced Rac1 activation, a hallmark signaling step involved in glucose-stimulated insulin secretion, was markedly inhibited following pharmacological (AFC) or molecular biological (siRNA-ICMT) inhibition of ICMT. Lastly, we also noticed a marked reduction in glucose-induced acute increase in the generation of reactive oxygen species in INS 832/13 cells pre-treated with AFC or transfected with siRNA-ICMT. Together, these data suggest that ICMT regulates glucose-induced Rac1 activation, generation of reactive oxygen species and insulin secretion in pancreatic ß-cells.


Assuntos
Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas Metiltransferases/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Secreção de Insulina , Cloreto de Potássio/farmacologia , RNA Interferente Pequeno/genética , Ratos
12.
Biochem Pharmacol ; 80(6): 874-83, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20493824

RESUMO

The phagocytic NADPH oxidase [NOX] has been implicated in the generation of superoxides in the pancreatic beta-cell. Herein, using normal rat islets and clonal INS 832/13 cells, we tested the hypothesis that activation of the small G-protein Rac1, which is a member of the NOX holoenzyme, is necessary for palmitate [PA]-induced generation of superoxides in pancreatic beta-cells. Incubation of isolated beta-cells with PA potently increased the NOX activity culminating in a significant increase in the generation of superoxides and lipid peroxides in these cells; such effects of PA were attenuated by diphenyleneiodonium [DPI], a known inhibitor of NOX. In addition, PA caused a transient, but significant activation [i.e., GTP-bound form] of Rac1 in these cells. NSC23766, a selective inhibitor of Rac1, but not Cdc42 or Rho activation, inhibited Rac1 activation and the generation of superoxides and lipid peroxides induced by PA. Fumonisin B-1 [FB-1], which inhibits de novo synthesis of ceramide [CER] from PA, also attenuated PA-induced superoxide and lipid peroxide generation and NOX activity implicating intracellularly generated CER in the metabolic effects of PA; such effects were also demonstrable in the presence of the cell-permeable C2-CER. Further, NSC23766 prevented C2-CER-induced Rac1 activation and production of superoxides and lipid peroxides. Lastly, C2-CER, but not its inactive analogue, significantly reduced the mitochondrial membrane potential, which was prevented to a large degree by NSC23766. Together, our findings suggest that Tiam1/Rac1 signaling pathway regulates PA-induced, CER-dependent superoxide generation and mitochondrial dysfunction in pancreatic beta-cells.


Assuntos
Ceramidas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Células Secretoras de Insulina/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Proteínas de Neoplasias/fisiologia , Ácido Palmítico/farmacologia , Superóxidos/metabolismo , Proteínas rac1 de Ligação ao GTP/fisiologia , Animais , Linhagem Celular , Ceramidas/biossíntese , Células Secretoras de Insulina/efeitos dos fármacos , Peróxidos Lipídicos/biossíntese , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T
13.
Am J Physiol Endocrinol Metab ; 299(2): E276-86, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20501872

RESUMO

We report localization of a cytosolic protein histidine phosphatase (PHP; approximately 16 kDa) in INS 832/13 cells, normal rat islets, and human islets. siRNA-mediated knockdown of PHP markedly reduced glucose- or mitochondrial fuel-induced but not KCl-induced insulin secretion. siRNA-mediated knockdown of PHP also attenuated mastoparan-induced insulin secretion, suggesting its participation in G protein-sensitive signaling steps, leading to insulin secretion. Functional assays revealed that the beta-cell PHP catalyzes the dephosphorylation of ATP-citrate lyase (ACL). Silencing of PHP expression markedly reduced ACL activity, suggesting functional regulation of ACL by PHP in beta-cells. Coimmunoprecipitation studies revealed modest effects of glucose on the interaction between PHP and ACL. Confocal microscopic evidence indicated that glucose promotes association between ACL and nm23-H1, a known kinase histidine kinase, but not between PHP and ACL. Furthermore, metabolic viability of INS 832/13 cells was resistant to siRNA-PHP, suggesting no regulatory roles of PHP in cell viability. Finally, long-term exposure (24 h) of INS 832/13 cells or rat islets to high glucose (30 mM) increased the expression of PHP. Such increases in PHP expression were also seen in islets derived from the Zucker diabetic fatty rat compared with islets from the lean control animals. Together, these data implicate regulatory roles for PHP in a G protein-sensitive step involved in nutrient-induced insulin secretion. In light of the current debate on putative regulatory roles of ACL in insulin secretion, additional studies are needed to precisely identify the phosphoprotein substrate(s) for PHP in the cascade of events leading to nutrient-induced insulin secretion.


Assuntos
Citosol/metabolismo , Metabolismo Energético/fisiologia , Glucose/fisiologia , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mitocôndrias/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Adulto , Animais , Linhagem Celular , Citosol/efeitos dos fármacos , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Feminino , Imunofluorescência , Glucose/farmacologia , Humanos , Indicadores e Reagentes , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Microscopia Confocal , Cloreto de Potássio/farmacologia , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Zucker
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...