Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38563893

RESUMO

After birth, the development of secondary lymphoid tissues (SLTs) in the colon is dependent on the expression of the Aryl Hydrocarbon Receptor (AhR) in immune cells as a response to the availability of AhR ligands. However, little is known about how AhR activity from intestinal epithelial cells (IECs) may influence the development of tertiary lymphoid tissues (TLTs). As organized structures that develop at sites of inflammation or infection during adulthood, TLTs serve as localized centers of adaptive immune responses, and their presence has been associated with the resolution of inflammation and tumorigenesis in the colon. Here, we investigated the effect of the conditional loss of AhR activity in IECs in the formation and immune cell composition of TLTs in a model of acute inflammation. In females, loss of AhR activity in IECs reduced the formation of TLTs without significantly changing disease outcomes nor immune cell composition within TLTs. In males lacking AhR expression in IECs, increased disease activity index, lower expression of functional-IEC genes, increased number of TLTs, increased T-cell density, and lower B- to T-cell ratio was observed. These findings may represent an unfavorable prognosis when exposed to DSS-induced epithelial damage compared to females. Sex and loss of IEC AhR also resulted in changes in microbial populations in the gut. Collectively, these data suggest that the formation of TLTs in the colon is influenced by sex and AhR expression in IECs.

2.
Elife ; 122024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412016

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. There is growing evidence that dysbiosis of the intestinal microbiota and disruption of microbiota-host interactions contribute to the pathology of NAFLD. We previously demonstrated that gut microbiota-derived tryptophan metabolite indole-3-acetate (I3A) was decreased in both cecum and liver of high-fat diet-fed mice and attenuated the expression of inflammatory cytokines in macrophages and Tnfa and fatty acid-induced inflammatory responses in an aryl-hydrocarbon receptor (AhR)-dependent manner in hepatocytes. In this study, we investigated the effect of orally administered I3A in a mouse model of diet-induced NAFLD. Western diet (WD)-fed mice given sugar water (SW) with I3A showed dramatically decreased serum ALT, hepatic triglycerides (TG), liver steatosis, hepatocyte ballooning, lobular inflammation, and hepatic production of inflammatory cytokines, compared to WD-fed mice given only SW. Metagenomic analysis show that I3A administration did not significantly modify the intestinal microbiome, suggesting that I3A's beneficial effects likely reflect the metabolite's direct actions on the liver. Administration of I3A partially reversed WD-induced alterations of liver metabolome and proteome, notably, decreasing expression of several enzymes in hepatic lipogenesis and ß-oxidation. Mechanistically, we also show that AMP-activated protein kinase (AMPK) mediates the anti-inflammatory effects of I3A in macrophages. The potency of I3A in alleviating liver steatosis and inflammation clearly demonstrates its potential as a therapeutic modality for preventing the progression of steatosis to non-alcoholic steatohepatitis (NASH).


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Inflamação , Dieta Ocidental/efeitos adversos , Citocinas , Suplementos Nutricionais , Acetatos , Indóis/farmacologia
3.
J Biol Chem ; 300(1): 105596, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145745

RESUMO

Short-chain dehydrogenases/reductases (SDRs) are one of the most prevalent enzyme families distributed among the sequenced microorganisms. Despite the presence of a conserved catalytic tetrad and high structural similarity, these enzymes exhibit different substrate specificities. The insufficient knowledge regarding the amino acids underlying substrate specificity hinders the understanding of the SDRs' roles in diverse and significant biological processes. Here, we performed bioinformatic analysis, molecular modeling, and mutagenesis studies to identify the key residues that regulate the substrate specificities of two homologous microbial SDRs (i.e., DesE and KduD). Further, we investigated the impact of altering the physicochemical properties of these amino acids on enzyme activity. Interestingly, molecular dynamics simulations also suggest a critical role of enzyme conformational flexibility in substrate recognition and catalysis. Overall, our findings improve the understanding of microbial SDR substrate specificity and shed light on future rational design of more efficient and effective biocatalysts.


Assuntos
Bactérias , Proteínas de Bactérias , Redutases-Desidrogenases de Cadeia Curta , Aminoácidos , Catálise , Conformação Molecular , Redutases-Desidrogenases de Cadeia Curta/química , Especificidade por Substrato , Bactérias/enzimologia , Proteínas de Bactérias/química , Simulação de Acoplamento Molecular
4.
Exp Biol Med (Maywood) ; 248(22): 2131-2150, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37997859

RESUMO

The gut microbiota sit at an important interface between the host and the environment, and are exposed to a multitude of nutritive and non-nutritive substances. These microbiota are critical to maintaining host health, but their supportive roles may be compromised in response to endogenous compounds. Numerous non-nutritive substances are introduced through contaminated foods, with three common groups of contaminants being bisphenols, phthalates, and mycotoxins. The former contaminants are commonly introduced through food and/or beverages packaged in plastic, while mycotoxins contaminate various crops used to feed livestock and humans alike. Each group of contaminants have been shown to shift microbial communities following exposure; however, specific patterns in microbial responses have yet to be identified, and little is known about the capacity of the microbiota to metabolize these contaminants. This review characterizes the state of existing research related to gut microbial responses to and biotransformation of bisphenols, phthalates, and mycotoxins. Collectively, we highlight the need to identify consistent, contaminant-specific responses in microbial shifts, whether these community alterations are a result of contaminant effects on the host or microbiota directly, and to identify the extent of contaminant biotransformation by microbiota, including if these transformations occur in physiologically relevant contexts.


Assuntos
Microbioma Gastrointestinal , Microbiota , Micotoxinas , Ácidos Ftálicos , Humanos , Dieta
5.
Int J Mol Sci ; 24(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37175855

RESUMO

It was recently reported that the hydroxyflavones quercetin and kaempferol bind the orphan nuclear receptor 4A1 (NR4A1, Nur77) and act as antagonists in cancer cells and tumors, and they inhibit pro-oncogenic NR4A1-regulated genes and pathways. In this study, we investigated the interactions of flavone, six hydroxyflavones, seven dihydroxyflavones, three trihydroxyflavones, two tetrahydroxyflavones, and one pentahydroxyflavone with the ligand-binding domain (LBD) of NR4A1 using direct-binding fluorescence and an isothermal titration calorimetry (ITC) assays. Flavone and the hydroxyflavones bound NR4A1, and their KD values ranged from 0.36 µM for 3,5,7-trihydroxyflavone (galangin) to 45.8 µM for 3'-hydroxyflavone. KD values determined using ITC and KD values for most (15/20) of the hydroxyflavones were decreased compared to those obtained using the fluorescence assay. The results of binding, transactivation and receptor-ligand modeling assays showed that KD values, transactivation data and docking scores for these compounds are highly variable with respect to the number and position of the hydroxyl groups on the flavone backbone structure, suggesting that hydroxyflavones are selective NR4A1 modulators. Nevertheless, the data show that hydroxyflavone-based neutraceuticals are NR4A1 ligands and that some of these compounds can now be repurposed and used to target sub-populations of patients that overexpress NR4A1.


Assuntos
Flavonas , Receptores Nucleares Órfãos , Humanos , Flavonas/farmacologia , Ligantes , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Receptores Nucleares Órfãos/metabolismo , Ligação Proteica
6.
Receptors (Basel) ; 2(1): 93-99, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38651159

RESUMO

The aryl hydrocarbon receptor (AhR) is overexpressed in many tumor types and exhibits tumor-specific tumor promoter and tumor suppressor-like activity. In colon cancer, most but not all studies suggest that the AhR exhibits tumor suppressor activity which is enhanced by AhR ligands acting as agonists. Our studies investigated the role of the AhR in colon tumorigenesis using wild-type and AhR-knockout mice, the inflammation model of colon tumorigenesis using mice treated with azoxymethane (AOM)/dextran sodium sulfate (DSS) and APCS580/+; KrasG12D/+ mice all of which form intestinal tumors. The effects of tissue-specific AhR loss in the intestine of the tumor-forming mice on colonic stem cells, organoid-initiating capacity, colon tumor formation and mechanisms of AhR-mediated effects were investigated. Loss of AhR enhanced stem cell and tumor growth and in the AOM/DSS model AhR-dependent suppression of FOXM1 and downstream genes was important for AhR-dependent anticancer activity. Furthermore, the effectiveness of interleukin-22 (IL22) in colonic epithelial cells was also dependent on AhR expression. IL22 induced phosphorylation of STAT3, inhibited colonic organoid growth, promoted colonic cell proliferation in vivo and enhanced DNA repair in AOM/DSS-induced tumors. In this mouse model, the AhR suppressed SOCS3 expression and enhanced IL22-mediated activation of STAT3, whereas the loss of the AhR increased levels of SOCS3 which in turn inhibited IL22-induced STAT3 activation. In the APCS580/+; KrasG12D/+ mouse model, the loss of the AhR enhanced Wnt signaling and colon carcinogenesis. Results in both mouse models of colon carcinogenesis were complemented by single cell transcriptomics on colonic intestinal crypts which also showed that AhR deletion promoted expression of FOXM1-regulated genes in multiple colonic cell subtypes. These results support the role of the AhR as a tumor suppressor-like gene in the colon.

7.
Gut Microbes ; 14(1): 2143222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36404471

RESUMO

Immunotherapy has led to impressive advances in the treatment of autoimmune and pro-inflammatory disorders; yet, its clinical outcomes remain limited by a variety of factors including the pro-inflammatory microenvironment (IME). Discovering effective immunomodulatory agents, and the mechanisms by which they control disease, will lead to innovative strategies for enhancing the effectiveness of current immunotherapeutic approaches. We have metabolically engineered an attenuated bacterial strain (i.e., Brucella melitensis 16M ∆vjbR, Bm∆vjbR::tnaA) to produce indole, a tryptophan metabolite that controls the fate and function of regulatory T (Treg) cells. We demonstrated that treatment with Bm∆vjbR::tnaA polarized macrophages (Mφ) which produced anti-inflammatory cytokines (e.g., IL-10) and promoted Treg function; moreover, when combined with adoptive cell transfer (ACT) of Treg cells, a single treatment with our engineered bacterial strain dramatically reduced the incidence and score of autoimmune arthritis and decreased joint damage. These findings show how a metabolically engineered bacterium can constitute a powerful vehicle for improving the efficacy of immunotherapy, defeating autoimmunity, and reducing inflammation by remodeling the IME and augmenting Treg cell function.


Assuntos
Autoimunidade , Microbioma Gastrointestinal , Humanos , Inflamação , Citocinas/metabolismo , Linfócitos T Reguladores , Bactérias/metabolismo
8.
J Affect Disord ; 319: 213-220, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206882

RESUMO

BACKGROUND: Our recent study demonstrated that selective aryl hydrocarbon receptor modulators (SAhRMs), such as 1,4-dihydroxy-2-napthoic acid (DHNA) act as antidepressants in female mice. Given that some effects of certain SAhRMs are known to also be mediated via estrogen receptor signaling, this study examined whether the effects of SAhRMs on mood, emotional state, and cognition are sex-dependent. METHODS: C57BL/6N mice were fed with vehicle or 20 mg/kg DHNA for three weeks prior to four weeks of unpredictable chronic mild stress (UCMS). Mice were examined for depression-like behaviors (sucrose preference, forced swim test (FST), splash test, tape groom test), emotional state (open-field test, light/dark test, marble burying, novelty-induced hypophagia, elevated-plus maze), and cognition (object location recognition, novel object recognition, Morris water maze). RESULTS: In females, UCMS decreased sucrose preference and increased FST immobility time; both effects were prevented by DHNA. In males, UCMS increased FST immobility time, and increased the latency to groom in the splash test. These effects were not mitigated by DHNA. However, in males, UCMS induced an increase in novelty-induced locomotion, an increase in the time spent in the light compartment in the L/D test, and an increase in the time spent with an object in a novel location. These effects were prevented by DHNA. CONCLUSIONS: Our findings indicate that DHNA has high potential to act as antidepressants in females. However, given classical interpretation, DHNA did not appear to act as an antidepressant in males. Nonetheless, our findings indicate that DHNA can mitigate stress effects and reactivity in males.


Assuntos
Depressão , Receptores de Hidrocarboneto Arílico , Masculino , Camundongos , Animais , Feminino , Depressão/tratamento farmacológico , Depressão/psicologia , Camundongos Endogâmicos C57BL , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Sacarose , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças
9.
Anal Chem ; 94(38): 13197-13204, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36108268

RESUMO

Microbial interactions within a natural or engineered consortium of microbes play an important role in the functions of the consortium. Better understanding these interactions is also important for engineering microbial consortia for specific applications. As such, tools that can enable investigating microbial interactions are highly valuable. One aspect of microbial interactions that impacts community formation is how the spatial organization of individual microbes impacts interactions leading to community formation. Here, we report the development of a tool that can manipulate the spatial organization of microorganisms to investigate the role of these interactions in community formation. Our developed microfluidic platform utilizes dielectrophoretic (DEP) force to perform on-demand spatial arrangement of microorganism-encapsulated agarose gel microparticles. To demonstrate this concept, three gel microparticle manipulators composed of three independently controllable DEP electrodes were utilized for the on-demand spatial arrangement of a specific combination of microparticles, each containing Escherichia coli cells expressing red fluorescence protein, green fluorescent protein, or blank content. The spatially arranged microparticles suspended in carrier oil were first trapped in a downstream particle trapping structure to form a defined microparticle array, followed by the application of an electric field to disrupt the carrier oil barrier so that all gel microparticles were within the same aqueous solution while the individual gel microparticles remain intact, thereby maintaining their spatial arrangements. We demonstrated that this method can be utilized to generate various arrays with differing number of "spacer microparticles", which were blank microparticles, between the two different E. coli-containing microparticles, enabling precise control over spatial distances between the two different cell populations. This method paves the way for more easily investigating bacterial interactions, especially those that depend on their spatial arrangement such as where cell-cell communication plays a major role.


Assuntos
Escherichia coli , Microfluídica , Bactérias , Proteínas de Fluorescência Verde/genética , Sefarose
10.
Am J Cancer Res ; 12(7): 3422-3436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968335

RESUMO

Early stage estrogen receptor α (ERα, ESR1)-positive breast cancer patients can develop more aggressive endocrine-resistant tumors that express constitutively active mutant forms of ERα including ERα-Y537S and ERα-D538G. These patients are treated with selective ER down regulators (SERDs) such as the ERα antagonist fulvestrant. Previous studies show that histone deacetylase (HDAC) inhibitors downregulate ERα and since some dietary derived short chain fatty acids (butyrate, propionate and acetate) exhibit HDAC inhibitory activity we investigated their effects as SERDs in MCF-7 and T47D cells expressing wild-type and mutant ERα-D538G and ERα-Y537S. The SCFAs exhibited SERD-like activity in both cell lines expressing wild-type and mutant ERα. The results for propionate and butyrate correlated with parallel induction of histone acetylation and this was also observed for the HDAC inhibitors Panobinostat, Vorinostat and Entinostat which also downregulated wild-type and mutant ERα and induced histone acetylation. Although acetate induced ERα degradation the mechanisms may be independent of the HDAC inhibitory activity of this compound. These results suggest that high fibre diets that induce formation of SCFAs may have some clinical efficacy for treating ER-positive endocrine resistant breast cancer patients and this is currently being investigated.

11.
Med Sci Sports Exerc ; 54(9): 1437-1447, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35969165

RESUMO

PURPOSE: Chronic overfeeding via a high-fat/high-sugar (HFHS) diet decreases wheel running and substantially alters the gut metabolome of C57BL/6J mice. In this study, we tested the hypothesis that fecal microbial transplants can modulate the effect of diet on wheel running. METHODS: Singly housed, 6-wk-old male C57BL/6J mice were fed either a grain-based diet (CHOW) or HFHS diet and provided a running wheel for 13 wk. Low-active, HFHS-exposed mice were then either switched to a CHOW diet and given an oral fecal microbial transplant from mice fed the CHOW diet, switched to a CHOW diet and given a sham transplant, or remained on the HFHS diet and given a fecal microbial transplant from mice fed the CHOW diet. Total wheel running, nutrient intake, body composition, fecal microbial composition, fecal metabolite composition, and liver steatosis were measured at various times throughout the study. RESULTS: We found that an HFHS diet decreases wheel running activity, increases body fat, and decreases microbial alpha diversity compared with a CHOW diet. Improvements in wheel running, body composition, and microbial alpha diversity were accomplished within 2 wk for mice switched from an HFHS diet to a CHOW diet with no clear evidence of an added benefit from fecal transplants. A fecal transplant from mice fed a CHOW diet without altering diet did not improve wheel running or body composition. Wheel running, body composition, fecal microbial composition, fecal metabolite composition, and liver steatosis percentage were primarily determined by diet. CONCLUSIONS: Our results suggest that diet is a primary mediator of wheel running with no clear effect from fecal microbial transplants.


Assuntos
Dieta Hiperlipídica , Fígado Gorduroso , Animais , Transplante de Microbiota Fecal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora
12.
Chem Biol Interact ; 365: 110067, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35917944

RESUMO

Unsubstituted flavone induced CYP1A1, CYP1B1 and UGT1A1 gene expression in Caco2 cells and was characterized as an aryl hydrocarbon receptor (AhR) agonist. The structure-activity relationships among 15 mono- and dihydroxyflavones showed that addition of one or two hydroxyl groups resulted in active (e.g.: 5- and 6- mono- and 5,6-dihydroxyflavones) and inactive (e.g.: 7-mono, 7,4' and 6,4'-dihydroxyflavones) AhR ligands. Ligand docking studies of flavone, mono- and dihydroxyflavones to the human AhR resulted in similar docking scores that varied from -3.48 to -4.58 kcal/mol and these values did not distinguish between AhR-active and AhR-inactive mono- and dihydroxyflavones. The AhR-inactive flavones were subsequently investigated as AhR antagonists by determining their activities as inhibitors of TCDD-induced expression of CYP1A1, CYP1AA2 and UGT 1A1 gene expression in Caco2 cells. Initial studies with 7,4'-dihydroxyflavone showed that this compound was an AhR antagonist in Caco2 cells and resembled the activity of the classical AhR antagonist CH223191. With few exceptions most of the remaining AhR-inactive compounds in terms of inducing AhR responsive genes were also AhR antagonists. Thus, based on modeling studies, mono- and dihydroxyflavones bind with similar affinities to the AhR and exhibit AhR agonist or antagonist activities, however, the structural requirements (substitution patterns) for predicting these opposing activities were not apparent and could only be determined using bioassays.


Assuntos
Flavonas , Receptores de Hidrocarboneto Arílico , Células CACO-2 , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Flavonas/farmacologia , Flavonoides/farmacologia , Humanos , Ligantes , Relação Estrutura-Atividade
13.
ACS Chem Biol ; 17(7): 1665-1671, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35687750

RESUMO

Human gastrointestinal microbiota are known for the keto-reductive metabolism of small-molecule pharmaceuticals; however, the responsible enzymes remain poorly understood. Through in vitro biochemical assays, we report the identification of enzymes encoded in the genome of Clostridium bolteae that can reduce the ketone groups of nabumetone, hydrocortisone, and tacrolimus. The homologues to a newly identified enzyme (i.e., DesE) are potentially widely distributed in the gut microbiome. The selected enzymes display different levels of activities against additional chemicals such as two dietary compounds (i.e., raspberry ketone and zingerone), chemotherapeutic drug doxorubicin, and its aglycone metabolite doxorubicinone. Thus, our results expand the repertoire of enzymes that can reduce the ketone groups in small molecules and could serve as the basis for future personalized medicine approaches.


Assuntos
Microbioma Gastrointestinal , Bactérias/metabolismo , Clostridium , Humanos , Nabumetona/metabolismo , Xenobióticos/metabolismo
14.
Genes (Basel) ; 13(5)2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35627141

RESUMO

The implication of the heterogeneous spectrum of pro- and anti-inflammatory macrophages (Macs) has been an important area of investigation over the last decade. The polarization of Macs alters their functional phenotype in response to their surrounding microenvironment. Macs are the major immune cells implicated in the pathogenesis of atherosclerosis. A hallmark pathology of atherosclerosis is the accumulation of pro-inflammatory M1-like macrophages in coronary arteries induced by pro-atherogenic stimuli; these M1-like pro-inflammatory macrophages are incapable of digesting lipids, thus resulting in foam cell formation in the atherosclerotic plaques. Recent findings suggest that the progression and stability of atherosclerotic plaques are dependent on the quantity of infiltrated Macs, the polarization state of the Macs, and the ratios of different types of Mac populations. The polarization of Macs is defined by signature markers on the cell surface, as well as by factors in intracellular and intranuclear compartments. At the same time, pro- and anti-inflammatory polarized Macs also exhibit different gene expression patterns, with differential cellular characteristics in oxidative phosphorylation and glycolysis. Macs are reflective of different metabolic states and various types of diseases. In this review, we discuss the major differences between M1-like Macs and M2-like Macs, their associated metabolic pathways, and their roles in atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Aterosclerose/genética , Aterosclerose/patologia , Humanos , Ativação de Macrófagos , Macrófagos/metabolismo , Fenótipo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo
15.
J Affect Disord ; 309: 201-210, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35461819

RESUMO

BACKGROUND: Current pharmaceutical treatments for depression are sometimes ineffective and may have unwanted side effects that interfere with patient compliance. This study examined the potential antidepressant-like effects of dietary- and microbial-derived aryl hydrocarbon receptor (AhR) ligands, 3,3'-diindolylmethane (DIM) and 1,4-dihydroxy-2-naphthoic acid (1,4-DHNA). METHODS: Female C57BL/6 mice were subjected to unpredictable chronic mild stress (UCMS) or were unstressed. For three weeks prior to UCMS mice were fed daily with vehicle or 20 mg/kg DIM, 1,4-DHNA or AhR-inactive isomer 3,7-DHNA; another group was subjected to two weeks UCMS before ligand administration began. Mice were examined for anhedonia-like behavior as measured by the sucrose preference test. Additionally, anxiety levels of the mice were examined before UCMS and ligand administration began and at the end in the open field, light/dark, elevated plus maze, novelty-induced hypophagia, and marble burying tests. At the end of the experiment they were also examined in the Morris water maze (MWM) task. RESULTS: Both DIM and 1,4-DHNA, but not 3,7-DHNA, successfully prevented and reversed UCMS-induced anhedonia-like behavior. Furthermore, both DIM and DHNA had little to no effect on anxiety levels and did not induce spatial learning deficits. LIMITATIONS: Additional studies are required to determine to what degree the antidepressant-like effects of DIM and 1,4-DHNA can be attributed to their activities as AhR ligands. CONCLUSIONS: Our findings indicate that dietary and microbial-derived AhR ligands may have clinical applications as potential antidepressants. Future studies are necessary to elucidate the role of AhR in depression-like states and the underlying mechanisms of action.


Assuntos
Anedonia , Antidepressivos , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Modelos Animais de Doenças , Feminino , Humanos , Indóis , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Naftóis , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico
16.
Cells ; 11(3)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35159382

RESUMO

There is growing interest in the crosstalk between the gut microbiome, host metabolomic features, and disease pathogenesis. The current investigation compared long-term (26 week) and acute (3 day) dietary spinach intake in a genetic model of colorectal cancer. Metabolomic analyses in the polyposis in rat colon (Pirc) model and in wild-type animals corroborated key contributions to anticancer outcomes by spinach-derived linoleate bioactives and a butanoate metabolite linked to increased α-diversity of the gut microbiome. Combining linoleate and butanoate metabolites in human colon cancer cells revealed enhanced apoptosis and reduced cell viability, paralleling the apoptosis induction in colon tumors from rats given long-term spinach treatment. Mechanistic studies in cell-based assays and in vivo implicated the linoleate and butanoate metabolites in targeting histone deacetylase (HDAC) activity and the interferon-γ (IFN-γ) signaling axis. Clinical translation of these findings to at-risk patients might provide valuable quality-of-life benefits by delaying surgical interventions and drug therapies with adverse side effects.


Assuntos
Ácido Butírico , Neoplasias do Colo , Dieta , Ácido Linoleico , Spinacia oleracea , Animais , Neoplasias do Colo/patologia , Humanos , Interferon gama/uso terapêutico , Metabolômica , Ratos
17.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216335

RESUMO

Chronic low-grade inflammation is a hallmark of aging, which is now coined as inflamm-aging. Inflamm-aging contributes to many age-associated diseases such as obesity, type 2 diabetes, cardiovascular disease, and inflammatory bowel disease (IBD). We have shown that gut hormone ghrelin, via its receptor growth hormone secretagogue receptor (GHS-R), regulates energy metabolism and inflammation in aging. Emerging evidence suggests that gut microbiome has a critical role in intestinal immunity of the host. To determine whether microbiome is an integral driving force of GHS-R mediated immune-metabolic homeostasis in aging, we assessed the gut microbiome profiles of young and old GHS-R global knockout (KO) mice. While young GHS-R KO mice showed marginal changes in Bacteroidetes and Firmicutes, aged GHS-R KO mice exhibited reduced Bacteroidetes and increased Firmicutes, featuring a disease-susceptible microbiome profile. To further study the role of GHS-R in intestinal inflammation in aging, we induced acute colitis in young and aged GHS-R KO mice using dextran sulfate sodium (DSS). The GHS-R KO mice showed more severe disease activity scores, higher proinflammatory cytokine expression, and decreased expression of tight junction markers. These results suggest that GHS-R plays an important role in microbiome homeostasis and gut inflammation during aging; GHS-R suppression exacerbates intestinal inflammation in aging and increases vulnerability to colitis. Collectively, our finding reveals for the first time that GHS-R is an important regulator of intestinal health in aging; targeting GHS-R may present a novel therapeutic strategy for prevention/treatment of aging leaky gut and inflammatory bowel disease.


Assuntos
Envelhecimento/metabolismo , Colite/metabolismo , Disbiose/metabolismo , Receptores de Grelina/metabolismo , Animais , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiologia , Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/fisiologia , Obesidade/metabolismo
18.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G93-G106, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755534

RESUMO

IL22 signaling plays an important role in maintaining gastrointestinal epithelial barrier function, cell proliferation, and protection of intestinal stem cells from genotoxicants. Emerging studies indicate that the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, promotes production of IL22 in gut immune cells. However, it remains to be determined if AhR signaling can also affect the responsiveness of colonic epithelial cells to IL22. Here, we show that IL22 treatment induces the phosphorylation of STAT3, inhibits colonic organoid growth, and promotes colonic cell proliferation in vivo. Notably, intestinal cell-specific AhR knockout (KO) reduces responsiveness to IL22 and compromises DNA damage response after exposure to carcinogen, in part due to the enhancement of suppressor of cytokine signaling 3 (SOCS3) expression. Deletion of SOCS3 increases levels of pSTAT3 in AhR KO organoids, and phenocopies the effects of IL22 treatment on wild-type (WT) organoid growth. In addition, pSTAT3 levels are inversely associated with increased azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colon tumorigenesis in AhR KO mice. These findings indicate that AhR function is required for optimal IL22 signaling in colonic epithelial cells and provide rationale for targeting AhR as a means of reducing colon cancer risk.NEW & NOTEWORTHY AhR is a key transcription factor controlling expression of IL22 in gut immune cells. In this study, we show for the first time that AhR signaling also regulates IL22 response in colonic epithelial cells by modulating SOCS3 expression.


Assuntos
Colo/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Interleucinas/farmacologia , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Fator de Transcrição STAT3/efeitos dos fármacos , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Colo/metabolismo , Neoplasias do Colo/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Camundongos Knockout , Organoides/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Ativação Transcricional/fisiologia , Interleucina 22
19.
Cancer Prev Res (Phila) ; 15(1): 17-28, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34815312

RESUMO

Despite recent progress recognizing the importance of aryl hydrocarbon receptor (Ahr)-dependent signaling in suppressing colon tumorigenesis, its role in regulating colonic crypt homeostasis remains unclear. To assess the effects of Ahr on intestinal epithelial cell heterogeneity and functional phenotypes, we utilized single-cell transcriptomics and advanced analytic strategies to generate a high-quality atlas for colonic intestinal crypts from wild-type and intestinal-specific Ahr knockout mice. Here we observed the promotive effects of Ahr deletion on Foxm1-regulated genes in crypt-associated canonical epithelial cell types and subtypes of goblet cells and deep crypt-secretory cells. We also show that intestinal Ahr deletion elevated single-cell entropy (a measure of differentiation potency or cell stemness) and RNA velocity length (a measure of the rate of cell differentiation) in noncycling and cycling Lgr5+ stem cells. In general, intercellular signaling cross-talk via soluble and membrane-bound factors was perturbed in Ahr-null colonocytes. Taken together, our single-cell RNA sequencing analyses provide new evidence of the molecular function of Ahr in modulating putative stem cell driver genes, cell potency lineage decisions, and cell-cell communication in vivo. PREVENTION RELEVANCE: Our mouse single-cell RNA sequencing analyses provide new evidence of the molecular function of Ahr in modulating colonic stemness and cell-cell communication in vivo. From a cancer prevention perspective, Ahr should be considered a therapeutic target to recalibrate remodeling of the intestinal stem cell niche.


Assuntos
Colo , Receptores de Hidrocarboneto Arílico , Animais , Diferenciação Celular , Camundongos , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Análise de Sequência de RNA , Análise de Célula Única
20.
Annu Rev Nutr ; 41: 455-478, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633858

RESUMO

The aryl hydrocarbon receptor (AhR) is a ligand-activated basic-helix-loop-helix transcription factor that binds structurally diverse ligands and senses cues from environmental toxicants and physiologically relevant dietary/microbiota-derived ligands. The AhR is an ancient conserved protein and is widely expressed across different tissues in vertebrates and invertebrates. AhR signaling mediates a wide range of cellular functions in a ligand-, cell type-, species-, and context-specific manner. Dysregulation of AhR signaling is linked to many developmental defects and chronic diseases. In this review, we discuss the emerging role of AhR signaling in mediating bidirectional host-microbiome interactions. We also consider evidence showing the potential for the dietary/microbial enhancement ofhealth-promoting AhR ligands to improve clinical pathway management in the context of inflammatory bowel diseases and colon tumorigenesis.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Dieta , Homeostase , Humanos , Ligantes , Receptores de Hidrocarboneto Arílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...