Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Curr Med Chem ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757322

RESUMO

Globally, cardiovascular diseases (CVDs) are the main cause of mortality every year worldwide. CVD health is influenced by various health factors, such as blood pressure, cholesterol levels, and glucose control. The main risk factors include smoking, physical activity, food intake, and body mass index. Around 90% of CVDs could be prevented by controlling these risk factors. Heavy metals are indigenous to the environment of the earth. However, modern lifestyles have led to the exploitation of our environment by unconstrained use of heavy metals. Though heavy metals are essential components, they are hazardous to humans and living systems due to their persistent and non-degradable nature. The mainpurpose of this study is to provide a literature review on the mechanisms of heavy metals, particularly arsenic, lead, and cadmium, that cause cardiovascular diseases. The major mechanism by which heavy metals result in various modalities of cardiovascular disease is the generation of reactive species and the depletionof the antioxidant reserves inside the biological system. The generation of reactive species gradually leads to the activation of various signaling pathways, resulting in either apoptosis or unrestricted cell growth. These unfavorable conditions result in a state when there is an imbalance between reactive species generation and antioxidant activity. Both endogenously present antioxidants and dietary antioxidants are very much essential in regulating the redox potential of the body. They help in the detoxification and excretion of heavy metals and their metabolites in the biological system. Therefore, recognizing the role of heavy metals in cardiovascular health is crucial for developing preventive strategies and interventions aimed at mitigating their adverse effects on human health.

2.
Cureus ; 16(4): e58091, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38738026

RESUMO

Introduction Osteosarcoma, a malignant bone tumor, poses significant treatment challenges, necessitating the development of alternative therapeutic strategies. Aerva lanata (A. lanata), a medicinal plant with traditional use in various healthcare systems, has anti-cancer properties. This study looks at the oncolytic effect of A. lanata extract on osteosarcoma cell lines (sarcoma osteogenic-Saos2). Aim The aim of this study was to investigate the oncolytic effect of Aerva lanata on Saos2 cell lines through the apoptotic signaling pathway. Materials and methods A. lanata extract was prepared using Soxhlet extraction, and its cytotoxic effects on Saos2 cells were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Real-time polymerase chain reaction (RT-PCR) analysis of gene activity was used to assess the extract's effect on apoptotic signaling pathways. Results The MTT assay demonstrated a dose-dependent decrease in Saos2 proliferation following treatment with A. lanata extract at concentrations ranging from 50 µg to 200 µg. The standard deviations observed ranged from 1.414 to 7.071. Gene expression analysis revealed that the extract led to a reduction in the messenger ribonucleic acid (mRNA) levels of the anti-apoptotic marker B-cell lymphoma 2 (Bcl2), with standard deviations ranging from 1 to 0.535. Conversely, it induced an increase in the mRNA levels of the tumor suppressor protein p53, with standard deviations ranging from 1 to 1.835. These findings suggest that the extract modulates the apoptotic pathways of the Bcl2 and p53 genes.  Conclusion A. lanata extract exhibits promising anti-cancer activity against Saos2 osteosarcoma cell lines, inducing apoptosis by downregulating Bcl2 and increasing p53. The study's findings suggest that A. lanata may be useful as a natural treatment for osteosarcoma.

3.
Cell Biochem Funct ; 42(4): e4027, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715184

RESUMO

Bioactive phytocompounds are crucial components in all plants. Since the time of traditional medicine, the utilization of plants has been grounded in the potential of these bioactive compounds to treat or manage specific illnesses. These natural bioactive compounds have sparked growing interest in employing medicinal plants for addressing various conditions, such as inflammatory diseases, diabetes, and cancer. This study focuses on assessing the qualitative phytochemical composition, antioxidant potential, and cytotoxic effects of blueberry (Vaccinium sect. Cyanococcus) extract using three different solvents, namely water, ethanol, and methanol. The extract exhibited notable antioxidant activities, as evidenced by DPPH and H2O2 free radical scavenging assays. The cell viability assay also demonstrated cell growth inhibition in A549 cells. Furthermore, nine specific phytocompounds sourced from existing literature were selected for molecular docking studies against CDK6 and, AMPK key protein kinases which enhance the cancer progression. The molecular docking results also revealed favorable binding scores, with a high score of -9.5 kcal/mol in CDK6 protein and a maximum score of AMPK with targets of -8.8 kcal/mol. The selected phytocompounds' pharmacodynamic properties such as ADMET also supported the study. Furthermore, rutin stated that pre-dominantly present in blueberry plants shows a potent cytotoxicity effect in A549 cells. Functional annotations by bioinformatic analysis for rutin also revealed the strong enrichment in the involvement of PI3K/AKT1/STAT, and p53 signaling pathways. Based on this analysis, the identified rutin and other compounds hold a promising anticancer activity. Overall, the comprehensive evaluation of both in vitro and in silico data suggests that the Vaccinium sect. Cyanococcus extract could serve as a valuable source of pharmaceutical agents and may prove effective in future therapeutic applications.


Assuntos
Mirtilos Azuis (Planta) , Proliferação de Células , Receptores ErbB , Estresse Oxidativo , Extratos Vegetais , Fator de Transcrição STAT3 , Transdução de Sinais , Proteína Supressora de Tumor p53 , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Mirtilos Azuis (Planta)/química , Estresse Oxidativo/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Sobrevivência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais
4.
Cureus ; 16(3): e56300, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38629020

RESUMO

Background This study investigates Merremia emarginata's curative effectiveness against colon cancer cells. M. emarginata, often known as Elika jemudu, is a Convolvulaceae family plant. The inhibitory ability of anticancer herbal extracts against cancer cell growth and mediators is tested.  Aim This study aims to evaluate the potent anticancer activity of M. emarginata against colon cancer cell line (HT-29). Materials and methods M. emarginata leaves were gathered and processed using solvent extraction. Anticancer activity on colon cancer cells was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and cysteine aspartic acid protease-3 (caspase 3), B-cell lymphoma 2 (Bcl-2), and B-cell lymphoma-extra large (Bcl-xL) mRNA expressions. The data was reported as the mean ± SD of three separate experiments done in triplicate. The statistical analysis was carried out using one-way analysis of variance (ANOVA), with a p-value less than 0.05 indicating statistical significance. Results The cell viability test showed a gradual decrease in cell growth and proliferation as the concentration increased. The ethanolic extract of M. emarginata was found to be cytotoxic against colon caller cell lines. The extract was able to induce apoptosis of cancer as revealed by Bcl-2, Bcl-xL, and caspase-3 (p<0.05 and p<0.001) signaling pathways. Conclusion M. emarginata extracts showed good anticancer activity against colon cancer cell lines. Further work is required to establish and identify the chemical constituent responsible for its anticancer activity.

5.
Odontology ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619695

RESUMO

Oral premalignant disorders (OPMDs) are a group of potentially malignant conditions that pose a significant health burden globally. MicroRNAs (miRNAs), small non-coding RNA molecules, have emerged as crucial regulators of gene expression and have been implicated in various biological processes, including carcinogenesis. This review synthesizes existing knowledge to provide a comprehensive understanding of the molecular mechanisms underlying OPMDs and to highlight the potential of miRNAs as promising biomarkers and therapeutic targets. Additionally, this review seeks to explore the potential of miRNA-based diagnostic biomarkers for early detection of OPMDs in the current literature on miRNAs in OPMDs, examining their involvement in disease pathogenesis, diagnostic potential, and therapeutic implications. Dysregulated miRNAs can target genes involved in critical cellular processes, such as cell cycle regulation, apoptosis, and DNA repair, leading to disease progression. Notably, miR-21, miR-31, miR-135b, and miR-486-5p have shown promise as potential biomarkers for early detection of oral premalignant lesions. Furthermore, the paper discusses the therapeutic implications of miRNAs in OPMDs. Preclinical studies have demonstrated the efficacy of miRNA-targeted therapies, such as miRNA mimics and inhibitors, in suppressing the growth of oral premalignant lesions. Early-phase clinical trials have shown promising results, indicating the potential for personalized treatment approaches. The findings underscore the importance of understanding the molecular mechanisms underlying these disorders and provide insights for the development of improved diagnostic and therapeutic strategies. However, they pose certain limitations given their intrinsic variability in expression profiles, the need for optimized isolation and detection methods, and potential hurdles in transitioning from preclinical success to clinical applications. Thus, future clinical studies are warranted to fully exploit the potential of miRNAs in the management of OPMDs.

6.
Acta Trop ; 255: 107216, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636584

RESUMO

According to the World Health Organization, infectious diseases, particularly those caused by multidrug-resistant bacteria (MDR), are projected to claim the lives of 15 million people by 2050. Septicemia carries a higher morbidity and mortality rate than infections caused by susceptible Pseudomonas aeruginosa, and MDR-mediated ocular infections can lead to impaired vision and blindness. To identify and develop a potential drug against MDR P. aeruginosa, we employed in silico reverse genetics-based target mining, drug prioritization, and evaluation. Rare Lipoprotein A (RlpA) was selected as the target protein, and its crystal structure was geometrically optimized. Molecular docking and virtual screening analyses revealed that RlpA exhibits strong binding affinity with 11 compounds. Among these, 3-chlorophthalic acid was evaluated, and subsequent in vitro assays demonstrated significant anti-Pseudomonas activity with negligible cytotoxicity. The compound was further evaluated against both drug-susceptible and MDR P. aeruginosa strains in vitro, with cytotoxicity assessed using an MTT assay. The study demonstrated that 3-chlorophthalic acid exhibits potent anti-Pseudomonas activity with minimal toxicity to host cells. Consequently, this compound emerges as a promising candidate against MDR P. aeruginosa, warranting further investigation.

7.
Head Neck Pathol ; 18(1): 28, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536520

RESUMO

OBJECTIVES: This study aims to elucidate the expression of circulating exosomal miRNAs miRNA 21, miRNA 184, and miRNA 145 in the studied groups, including patients with (i) leukoplakia; (ii) oral submucous fibrosis; (iii) oral submucous fibrosis with leukoplakia; (iv) oral squamous cell carcinoma; and (v) healthy individuals. STUDY DESIGN: An observational study was conducted among 54 patients who reported to the outpatient department of Saveetha Dental College and Hospitals. The patients were divided into three groups: Group I healthy individuals (n = 18), Group II: case group (leukoplakia, OSMF, and leukoplakia and OSMF) (n = 18), and Group III: OSCC (n = 18). Real-time polymerase chain reaction analysis was carried out to assess the expression profiles of miRNA 21, miRNA 184, and miRNA 145. The statistical analysis was calculated using SPSS software version 23. RESULTS: All three miRNAs showed a statistically significant difference in the one-way ANOVA test between the case group (leukoplakia, OSMF, and leukoplakia and OSMF), healthy group, and OSCC group (p < 0.005). The case group (leukoplakia, OSMF, leukoplakia and OSMF) showed upregulated expression of miRNA 21 and miRNA 184 with threefold change and fourfold change and downregulated expression of miRNA 145 with 1.5-fold change when compared to apparently healthy individuals. CONCLUSION: Plasma circulating exosomal miRNAs miRNA 21, miRNA 145, and miRNA 184 expression could be a novel panel of plasma biomarkers to categorise case group (leukoplakia, OSMF, leukoplakia and OSMF) patients with a high risk of malignant transformation.


Assuntos
Carcinoma de Células Escamosas , MicroRNA Circulante , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Fibrose Oral Submucosa , Humanos , Fibrose Oral Submucosa/patologia , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/patologia , Leucoplasia
8.
Cureus ; 16(2): e54031, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38481883

RESUMO

Background The value and use of medicinal plants, including the widespread cultivation of Rosmarinus officinalis, have increased rapidly. R. officinalis, a medicinal plant native to the Mediterranean, has received attention for its potential therapeutic benefits. This study evaluates R. officinalis anticancer activity using human epithelial carcinoma (KB) cell lines derived from nasopharyngeal epidermoid carcinoma. The KB cell line is known for its increased sensitivity to specific chemotherapeutic agents (CA), making it a useful model in cancer research. The impact of R. officinalis is assessed using comprehensive analyses of cell viability and gene expression. Aim This study aims to evaluate the anti-cancer effects of R. officinalis on KB cell lines. Materials and methods The R. officinalis leaf extract was separated and used to treat KB cell lines. The cell viability of treated KB cells was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Real-time polymerase chain reaction (RT-PCR) was used to analyze the expressions of matrix metalloproteinase (MMP-9) and tumor-inducing metalloproteins (TIMP-1) messenger ribonucleic acid (mRNA) genes. The statistical analysis was performed. Results This study analyzes the anticancer properties of R. officinalis on KB cell lines. The results show that increasing the concentration of rosemary extract reduces cell viability in malignant cells. Furthermore, the R. officinalis effect on the apoptotic signaling system is demonstrated by a decrease in MMP-9 and TIMP-1 mRNA expressions, as observed by RT-PCR analysis. Conclusion Patients looking for natural anticancer treatments may benefit from biogenically prepared anticancer drugs. The current research focuses on R. officinalis as a potential alternative to chemically synthesized anticancer drugs.

9.
Cureus ; 16(2): e54061, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38481895

RESUMO

BACKGROUND: Piperine, a naturally occurring compound in black pepper (Piper nigrum), is known for its potential health benefits, including its reported enhancement of insulin sensitivity. However, the precise impact of piperine on hepatocyte nuclear factor 1 alpha (HNF-1α) and sterol regulatory element-binding protein 1c (SREBP-1c), transcription factors for insulin signaling and glucose metabolism in hepatocytes, remains unclear. OBJECTIVE: This study aims to investigate the effect of piperine, compared to metformin, on blood glucose and insulin levels by modifying the expression of hepatic HNF-1α and SREBP-1c in high-fat-diet (HFD) and sucrose-induced type 2 diabetes mellitus (T2DM) rats and in human Chang liver cells. METHODS: Adult male albino rats were categorized into four groups: group 1 as the control, group 2 as T2DM, group 3 as T2DM rats treated with piperine (40 mg), and group 4 as T2DM rats treated with metformin (50 mg). Fasting blood glucose (FBG) and serum insulin levels were measured using enzyme-linked immunosorbent assay (ELISA), while real-time polymerase chain reaction (RT-PCR) analysis was conducted to assess the mRNA expression of HNF-1α and SREBP-1c. Further, piperine was treated with normal and high glucose-induced Chang liver cells, and gene expression was analysed. Data analysis was performed using one-way analysis of variance (ANOVA), with a significance set at p<0.05. RESULTS: Treatment with piperine led to a notable decrease in blood glucose levels and circulating insulin when compared with T2DM rats (group 2). Additionally, piperine administration resulted in the upregulation of HNF-1α mRNA expression and downregulation of SREBP-1c mRNA levels whose effects were found to be near that of the control and standard drug metformin's effects. In vitro study also confirmed that piperine improved the HNF-1α expression and reduced the expression of SREBP-1c in Chang liver cells. CONCLUSION: Our findings suggest that piperine treatment effectively regulates hyperglycemic and hyperinsulinemic insulin resistance in the liver by modulating the expression of HNF-1α and SREBP-1c. Consequently, piperine emerges as a promising candidate for therapeutic intervention in managing T2DM.

10.
Mol Cell Oncol ; 11(1): 2326699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505173

RESUMO

Colorectal cancer (CRC) is a heterogeneous disease that requires new diagnostic and prognostic markers. Integrated bioinformatics approach to identify novel therapeutic targets associated with CRC. Using GEO2R identified DEGs in CRC, and Funrich software facilitated the visualization of DEGs through Venn diagrams. From a total of 114 enhanced DEGs, potential hub genes were further filtered based on their nodal strength and edges using STRING database. To gain insights into the functional roles of these hub genes, gene ontology and pathway enrichment were conducted thorough g: profiler web server. Subsequently, overall survival plots from GEPIA and oncogenic predictive functions like mRNA expressions for stages and nodal metastasis were employed to identify hub genes in CRC patient samples. Additionally, the cBioPortal and HPA databases also revealed genetic alterations and expression levels in these hub genes in CRC patients, further supporting their involvement in colorectal cancer. Gene expression by RT-PCR shows upregulation of hub genes in HT-29 cells. Finally, our integrated bioinformatic analysis revealed that ABCE1, AURKA, HSPD1, PHKA1, CDK4, and YWHAE as hub genes with potential oncogenic roles in CRC. These genes hold promise as diagnostic and prognostic markers for colorectal tumorigenesis, providing insights into targeted therapies for improved patient outcomes.

11.
Int J Biol Macromol ; 265(Pt 1): 130746, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467219

RESUMO

The burgeoning field of starch-based nanomaterials in biomedical applications has perceived notable progressions, with a particular emphasis on their pivotal role in precision drug delivery and the inhibition of tumor growth. The complicated challenges in current biomedical research require innovative approaches for improved therapeutic outcomes, prompting an exploration into the possible of starch-based nanomaterials. The conceptualization of this review emerged from recognizing the need for a comprehensive examination of the structural attributes, versatile properties, and mechanisms underlying the efficiency of starch-based nanomaterials in inhibiting tumor growth and enabling targeted drug delivery. This review delineates the substantial growth in utilizing starch-based nanomaterials, elucidating their small size, high surface-volume ratio, and biocompatibility, predominantly emphasizing their possible to actively recognize cancer cells, deliver anticancer drugs, and combat tumors efficiently. The investigation of these nanomaterials encompasses to improving biocompatibility and targeting specific tissues, thereby contributing to the evolving landscape of precision medicine. The review accomplishes by highlighting the auspicious strategies and modern developments in the field, envisioning a future where starch-based nanomaterials play a transformative role in molecular nanomaterials, evolving biomedical sciences. The translation of these advancements into clinical applications holds the potential to revolutionize targeted drug delivery and expand therapeutic outcomes in the realm of precision medicine.


Assuntos
Antineoplásicos , Nanoestruturas , Neoplasias , Humanos , Nanoestruturas/química , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Medicina de Precisão
12.
Noncoding RNA Res ; 9(2): 602-611, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532798

RESUMO

Oral squamous cell carcinoma (OSCC) showed a seemingly increasing incidence in the last decade. In India, despite the use of tobacco decreased rapidly, in the past five years, the incidence pattern of OSCC over gender and age showed a drastic shift. About 51 % of the head and neck cancers are not associated with habits. Studies exploring various contributing factors in the incidence of this malignancy have documented. Recently, the epigenetic factors associated with the induction and progression of OSCC were explored. More than 90 % of the human genome is made up of non-coding transcriptome, which believed to be noises. However, these non-coding RNAs were identified to be the major epigenetic modulators, which raises concern over incidence of carcinoma in non-habit patients. H19 is a long non coding RNA which proved to be an effective biomarker in various carcinoma. Its role in oral squamous cell cancer was not investigated in depth. This review discusses in detail the various epigenetic role of H19 in inducing oral carcinogenesis.

13.
Cureus ; 16(2): e53458, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38435153

RESUMO

Background Oral carcinoma presents a significant health challenge, prompting the need for innovative therapeutic approaches. Elevation of inflammatory mediators, including tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), has promoted cellular proliferation, inhibited apoptosis, and fostered oral cancer progression through complex signaling pathways. Hesperidin, a flavanone glycoside found in citrus fruits, is of keen interest in this study as it has been proven to have multiple health benefits through in vivo and in vitro studies. However, the mechanism behind the anticancer activity of hesperidin in oral carcinoma remains obscure. Aim The study aimed to explore the anticancer potential of hesperidin on human oral cancer cells (KB cells) by modulating pro-inflammatory and apoptotic signaling mechanisms. Methods Cancer cell growth inhibitory activity was assessed using the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Gene expression analysis was performed using real-time RT-PCR analysis. In addition, in silico docking analysis was conducted to confirm the binding affinity of hesperidin with pro-inflammatory and apoptosis signaling molecules. The data were analyzed using one-way ANOVA and the "t" test. Results Utilizing the MTT assay, a dose-dependent cytotoxic effect of hesperidin was unveiled, with a remarkable IC50 value indicative of its potent inhibition of cell proliferation. Complementing these findings (p<0.05), qRT-PCR analysis demonstrated hesperidin's regulatory influence on key molecular targets within the KB cell line. Hesperidin treatment resulted in a noteworthy reduction in TNF-α, interleukin-1 beta (IL-1-ß), IL-6, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and B-cell lymphoma 2 (Bcl-2) mRNA expression levels (p<0.05), highlighting its inhibitory role in cell proliferation, migration, and inflammation processes. Simultaneously, hesperidin promoted the expression of BAX mRNA (p<0.05), indicating an enhancement in cell death. Molecular docking simulations further revealed robust binding affinities between hesperidin and target proteins, suggesting its potential to disrupt cellular functions and inflammatory signaling pathways in oral cancer cells. Conclusion The cytotoxic effects on the KB cell line and its anti-inflammatory properties position hesperidin as a compelling candidate for further exploration in the quest for effective oral carcinoma treatments. These findings shed light on the intricate molecular mechanisms underlying hesperidin's promise as a therapeutic agent against oral carcinoma.

15.
Cureus ; 16(1): e51752, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38318595

RESUMO

INTRODUCTION: MicroRNAs (miRNAs) are well-established post-translational non-coding RNAs that play crucial roles in mRNA degradation and repression. Glucose transporter 1 (GLUT1) showed correlation along with various miRNA, specifically miRNA10a expression in lung cancers. The role of miRNA10a along with glucose upregulation leading to cancer proliferation in oral squamous cell carcinoma (OSCC) is unknown. This study aimed to investigate the expression levels of miRNA10a and GLUT1 in OSCC patients with diabetes. MATERIALS AND METHODS: miRNA10a and GLUT1 expression were estimated in OSCC, precancerous, and healthy tissues using quantitative reverse transcriptase polymerase chain reaction (RT-PCR). miRNA10a and GLUT1 expression levels were recorded as fold change. Further, a one-way analysis of variance (ANOVA) test was performed to find whether there is any difference in miRNA10a and GLUT1 expression between OSCC, precancerous, and healthy tissues. RESULTS: The RT-PCR findings revealed an increased expression of miRNA10a and GLUT1 in OSCC compared to precancerous and healthy tissue. There is a positive correlation between miRNA10a and GLUT1 expression levels in both potentially malignant and control tissues, with a marked increase in cancerous tissue. This study demonstrated the significance of upregulated miRNA10a expression, indicating a direct correlation with OSCC proliferation via GLUT1 overexpression. Specifically, miRNA10a exhibited a fold change of 1.2±0.072 in potentially malignant tissue and 1.4±0.05 in cancer tissue, while GLUT1 exhibited a fold change of 1.25±0.092 in potentially malignant tissue and 0.092±0.08 in cancer tissue, respectively. CONCLUSION: This research highlights the role of miRNA10a in cancer progression by facilitating proliferation through the regulation of GLUT1 in cancerous tissues, particularly in hyperglycemic conditions. This mechanism further contributes to increased glucose transport in cancer patients, which may potentially impede tumor prognosis. These findings underscore the potential significance of targeting miRNA10a and GLUT1 as therapeutic interventions in cancer management.

17.
Pathol Res Pract ; 254: 155130, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277750

RESUMO

BACKGROUND: Oral cancer represents a substantial global health burden, often associate with hypoxia-induced angiogenesis as a critical factor in its progression. Curcumin, a naturally occurring bioactive compounds, has gained increasing attention for its potential anticancer properties. OBJECTIVE: To assess the impact of curcumin on oral cancer, particularly its role in modulating HIF-1α-mediated angiogenesis in HSC-3 cells. METHODS: Our investigation involved multiple experimental approaches, including MTT assay, aerobic glycolysis by metabolic kit, cell cycle, and apoptosis assessment via flow cytometry. Furthermore, we employed molecular docking techniques to examine the interactions between curcumin and key angiogenesis related proteins, including HIF-1α, VEGF-B, MMP-3, and STAT3. RESULTS: Our results demonstrate that curcumin exerts significant effects on the cell survivability, cell cycle regulation, and apoptosis induction in oral cancer cells. These effects were particularly pronounced under the conditions of HIF-1α mediated angiogenesis. Computational binding analysis revealed strong binding interactions with curcumin and the selected proteins, implying a plausible mechanism through which curcumin may modulate the angiogenic pathways in oral cancer. CONCLUSION: Our research sheds light on the diverse effects of curcumin on oral cancer cells, emphasizing its potential as a promising therapeutic tool for addressing hypoxia-induced angiogenesis. However, further investigation is essential to comprehensively understand the molecular mechanisms underlying these effects in in vitro models. This deeper comprehension is crucial for translating these findings into clinical applications aimed at improving oral cancer treatment.


Assuntos
Carcinoma de Células Escamosas , Curcumina , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Angiogênese , Simulação de Acoplamento Molecular , Neoplasias Bucais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Linhagem Celular Tumoral
18.
Cureus ; 15(11): e48137, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38046721

RESUMO

INTRODUCTION: Among the epithelial malignancies of the head and neck region, oral squamous cell carcinoma (OSCC) arising from the oral mucosa is the commonest type. OSCC is common in the older population; however, recent epidemiological data indicate an increase in the incidence in the younger age group. The present study was designed to compare the clinicopathological characteristics of OSCC between young and old South Indian patients. METHODS: All the histopathologically confirmed cases of OSCC were retrieved from the department archives. Patients aged more than 40 years were considered Group I, and patients aged less than or equal to 40 were considered Group II. Age, gender, laterality, site, degree of keratinization, nuclear pleomorphism, pattern of invasion, lymphoplasmacytic infiltration, grade, tumor budding (TB), and tumor stroma ratio (TSR) were assessed. RESULTS: Among 510 patients reported with OSCC, 442 were aged above 40 years, and 68 were aged 40 years or younger. Nuclear pleomorphism, TB, and stroma-rich ratio were statistically higher in younger OSCC patients (p=0.00). CONCLUSION: The results of our study support the fact that OSCC in younger individuals is more aggressive. Targeting TB and tumor stroma could provide new strategies for the management of OSCC.

19.
Saudi Dent J ; 35(8): 1007-1013, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107042

RESUMO

The global increase in the prevalence of oral neoplasms and related deaths can be attributed to social development and lifestyle factors, leading to poor prognosis and a lack of early clinical detection. Oral cancer ranks ranked sixth mostly diagnosed cancer and is a leading cause of cancer-related deaths. In light of these circumstances, our objective was to assess the potential of ß-sitosterol, a naturally occurring herbal compound, as an anticancer agent against KB cells, a representative cell line for oral cancer. Our study primarily focused on evaluating the cytotoxic effect and mRNA expression of apoptotic proteins by ß-sitosterol on KB cells. The results demonstrated a remarkable cytotoxic effect, leading to cell death. Further investigation using flow cytometric analysis revealed that this cell death was mediated through the initiation of the apoptotic signalling by ß-sitosterol. The use of the bioinformatic tool, STITCH, supported our study by predicting drug-protein interactions and suggesting that ß-sitosterol may play a significant role in targeting apoptotic pathways. Additionally, docking results were employed to validate the findings demonstrating high binding affinity of ß-sitosterol with apoptotic-mediated signalling targets. To gain deeper insights into the molecular insights, we measured mRNA levels for BAX, BCL-2, MCL-1, P53, P21, MDM2, caspase3, and caspase9. Based on our comprehensive findings, our study concludes that ß-sitosterol holds significant therapeutic potential against oral cancer cells. These results strongly suggest that this herbal compound should be further explored as a potential treatment option for oral cancer for clinical trial.

20.
Cureus ; 15(9): e46065, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37900445

RESUMO

Background Transgender individuals in India experience immense psychosocial stressors, stigma, and violence. In response to stress, the body exhibits adaptive responses that necessitate the production of organic chemicals ensuing in the detection of blood serum and saliva. There are currently no laboratory tests that are confirmatory for the diagnosis of stress and facilitate necessary treatment to be carried out in a timely manner. Thus, potential salivary biomarkers could be a helpful tool in overseeing the efficacy of pharmacological treatment prescribed by a psychiatrist. Aim This study aimed to assess the correlation between perceived stress and salivary stress biomarker levels in transgender and gender nonconforming (TGNC) individuals in Chennai, India. Methodology Twenty-two TGNC individuals and 22 age-matched controls in Chennai were administered the Perceived Stress Scale-10 questionnaire. Following this, their saliva samples were collected using the passive drool technique and subjected to sandwich enzyme-linked immunosorbent assay (ELISA) technique for measuring salivary cortisol, salivary tumor necrosis factor-alpha (TNF-alpha), and salivary C-reactive protein (CRP). Independent t-test was used to compare salivary stress biomarker levels between the TGNC and age-matched control groups. Pearson's correlation test was done to correlate perceived stress and salivary stress biomarker levels in the TGNC group. Results Significant difference was seen between the TGNC and control groups with respect to salivary cortisol and salivary TNF-alpha levels, with the levels being higher in the TGNC group. A significant positive correlation was seen between perceived stress and salivary cortisol and between perceived stress and salivary TNF-alpha levels. Conclusion There is a significant correlation between perceived stress and salivary biomarkers of stress among TGNC people in Chennai.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...