Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Nat Struct Mol Biol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834914

RESUMO

Excitatory neurotransmission is principally mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-subtype ionotropic glutamate receptors (AMPARs). Negative allosteric modulators are therapeutic candidates that inhibit AMPAR activation and can compete with positive modulators to control AMPAR function through unresolved mechanisms. Here we show that allosteric inhibition pushes AMPARs into a distinct state that prevents both activation and positive allosteric modulation. We used cryo-electron microscopy to capture AMPARs bound to glutamate, while a negative allosteric modulator, GYKI-52466, and positive allosteric modulator, cyclothiazide, compete for control of the AMPARs. GYKI-52466 binds in the ion channel collar and inhibits AMPARs by decoupling the ligand-binding domains from the ion channel. The rearrangement of the ligand-binding domains ruptures the cyclothiazide site, preventing positive modulation. Our data provide a framework for understanding allostery of AMPARs and for rational design of therapeutics targeting AMPARs in neurological diseases.

2.
Methods Mol Biol ; 2799: 225-242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727910

RESUMO

Single-molecule fluorescence resonance energy transfer (smFRET) enables the real-time observation of conformational changes in a single protein molecule of interest. These observations are achieved by attaching fluorophores to proteins of interest in a site-specific manner and investigating the FRET between the fluorophores. Here we describe the method wherein the FRET is studied by adhering the protein molecules to a slide using affinity-based interactions and measuring the fluorophores' fluorescence intensity from a single molecule over time. The resulting information can be used to derive distance values for a point-to-point measurement within a protein or to calculate kinetic transition rates between various conformational states of a protein. Comparing these parameters between different conditions such as the presence of protein binding partners, application of ligands, or changes in the primary sequence of the protein can provide insights into protein structural changes as well as kinetics of these changes (if in the millisecond to second timescale) that underlie functional effects. Here we describe the procedure for conducting analyses of NMDA receptor conformational changes using the above methodology and provide a discussion of various considerations that affect the design, execution, and interpretation of similar smFRET studies.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Receptores de N-Metil-D-Aspartato , Imagem Individual de Molécula , Transferência Ressonante de Energia de Fluorescência/métodos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/química , Imagem Individual de Molécula/métodos , Conformação Proteica , Cinética , Corantes Fluorescentes/química , Humanos , Ligação Proteica
3.
Curr Opin Struct Biol ; 87: 102833, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733862

RESUMO

The ionotropic glutamate receptors (iGluRs) are comprised of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), N-methyl-d-aspartate receptor, kainate, and delta subtypes and are pivotal in neuronal plasticity. Recent structural studies on AMPA receptors reveal intricate conformational changes during activation and desensitization elucidating the steps from agonist binding to channel opening and desensitization. Additionally, interactions with auxiliary subunits, including transmembrane AMPA-receptor regulatory proteins, germ-cell-specific gene 1-like protein, and cornichon homologs, intricately modulate AMPA receptors. We discuss the recent high-resolution structures of these complexes that unveil stoichiometry, subunit positioning, and differences in specific side-chain interactions that influence these functional modulations.

4.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659769

RESUMO

N-methyl-D-aspartate (NMDA) receptors are ionotropic glutamate receptors involved in learning and memory. NMDA receptors primarily comprise two GluN1 and two GluN2 subunits. The GluN2 subunit dictates biophysical receptor properties, including the extent of receptor activation and desensitization. GluN2A- and GluN2D-containing receptors represent two functional extremes. To uncover the conformational basis of their functional divergence, we utilized single-molecule fluorescence resonance energy transfer to probe the extracellular domains of these receptor subtypes under resting and ligand-bound conditions. We find that the conformational profile of the GluN2 amino-terminal domain correlates with the disparate functions of GluN2A- and GluN2D-containing receptors. Changes at the pre-transmembrane segments inversely correlate with those observed at the amino-terminal domain, confirming direct allosteric communication between these domains. Additionally, binding of a positive allosteric modulator at the transmembrane domain shifts the conformational profile of the amino-terminal domain towards the active state, revealing a bidirectional allosteric pathway between extracellular and transmembrane domains.

5.
bioRxiv ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38076818

RESUMO

Excitatory neurotransmission is principally mediated by AMPA-subtype ionotropic glutamate receptors (AMPARs). Dysregulation of AMPARs is the cause of many neurological disorders and how therapeutic candidates such as negative allosteric modulators inhibit AMPARs is unclear. Here, we show that non-competitive inhibition desensitizes AMPARs to activation and prevents positive allosteric modulation. We dissected the noncompetitive inhibition mechanism of action by capturing AMPARs bound to glutamate and the prototypical negative allosteric modulator, GYKI-52466, with cryo-electron microscopy. Noncompetitive inhibition by GYKI-52466, which binds in the transmembrane collar region surrounding the ion channel, negatively modulates AMPARs by decoupling glutamate binding in the ligand binding domain from the ion channel. Furthermore, during allosteric competition between negative and positive modulators, negative allosteric modulation by GKYI-52466 outcompetes positive allosteric modulators to control AMPAR function. Our data provide a new framework for understanding allostery of AMPARs and foundations for rational design of therapeutics targeting AMPARs in neurological diseases.

6.
Biophys J ; 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37839410

RESUMO

The biological phenomenon of protein-lipid interactions in cell membranes underlies the diversity of peripheral membrane protein function and physical properties of the membrane. To summarize novel findings in the field, this research highlight focuses on recent publications in Biophysical Journal.

7.
Proteins ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526035

RESUMO

Kainate receptors are a subtype of ionotropic glutamate receptors that form transmembrane channels upon binding glutamate. Here, we have investigated the mechanism of partial agonism in heteromeric GluK2/K5 receptors, where the GluK2 and GluK5 subunits have distinct agonist binding profiles. Using single-molecule Förster resonance energy transfer, we found that at the bi-lobed agonist-binding domain, the partial agonist AMPA-bound receptor occupied intermediate cleft closure conformational states at the GluK2 cleft, compared to the more open cleft conformations in apo form and more closed cleft conformations in the full agonist glutamate-bound form. In contrast, there is no significant difference in cleft closure states at the GluK5 agonist-binding domain between the partial agonist AMPA- and full agonist glutamate-bound states. Additionally, unlike the glutamate-bound state, the dimer interface at the agonist-binding domain is not decoupled in the AMPA-bound state. Our findings suggest that partial agonism observed with AMPA binding is mediated primarily due to differences in the GluK2 subunit, highlighting the distinct contributions of the subunits towards activation.

8.
Commun Biol ; 6(1): 573, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248347

RESUMO

Ca2+ is an important signaling messenger. In microorganisms, fungi, and plants, H+/Ca2+ antiporters (CAX) are known to play key roles in the homeostasis of intracellular Ca2+ by catalyzing its efflux across the cell membrane. Here, we reveal that the bacterial CAX homolog YfkE transports Ca2+ in two distinct modes: a low-flux H+/Ca2+ exchange mode and a high-flux mode in which Ca2+ and phosphate ions are co-transported (1:1) in exchange for H+. Coupling with phosphate greatly accelerates the Ca2+ efflux activity of YfkE. Our studies reveal that Ca2+ and phosphate bind to adjacent sites in a central translocation pathway and lead to mechanistic insights that explain how this CAX alters its conserved alpha-repeat motifs to adopt phosphate as a specific "transport chaperon" for Ca2+ translocation. This finding uncovers a co-transport mechanism within the CAX family that indicates this class of proteins contributes to the cellular homeostasis of both Ca2+ and phosphate.


Assuntos
Antiporters , Fosfatos , Antiporters/metabolismo , Fosfatos/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Ânions/metabolismo
9.
Nat Commun ; 13(1): 6919, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376326

RESUMO

Understanding how ion channels gate is important for elucidating their physiological roles and targeting them in pathophysiological states. Here, we used SthK, a cyclic nucleotide-modulated channel from Spirochaeta thermophila, to define a ligand-gating trajectory that includes multiple on-pathway intermediates. cAMP is a poor partial agonist for SthK and depolarization increases SthK activity. Tuning the energy landscape by gain-of-function mutations in the voltage sensor domain (VSD) allowed us to capture multiple intermediates along the ligand-activation pathway, highlighting the allosteric linkage between VSD, cyclic nucleotide-binding (CNBD) and pore domains. Small, lateral displacements of the VSD S4 segment were necessary to open the intracellular gate, pointing to an inhibitory VSD at rest. We propose that in wild-type SthK, depolarization leads to such VSD displacements resulting in release of inhibition. In summary, we report conformational transitions along the activation pathway that reveal allosteric couplings between key sites integrating to open the intracellular gate.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Nucleotídeos Cíclicos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Ativação do Canal Iônico , AMP Cíclico/metabolismo , Ligantes
11.
Biophys J ; 121(1): E1, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34951952

Assuntos
Biofísica
12.
Sci Adv ; 7(52): eabk2200, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936451

RESUMO

Delta receptors are members of the ionotropic glutamate receptor superfamily and form trans-synaptic connections by interacting with the extracellular scaffolding protein cerebellin-1 and presynaptic transmembrane protein neurexin-1ß. Unlike other family members, however, direct agonist-gated ion channel activity has not been recorded in delta receptors. Here, we show that the GluD2 subtype of delta receptor forms cation-selective channels when bound to cerebellin-1 and neurexin-1ß. Using fluorescence lifetime measurements and chemical cross-linking, we reveal that tight packing of the amino-terminal domains of GluD2 permits glycine- and d-serine­induced channel openings. Thus, cerebellin-1 and neurexin-1ß act as biological cross-linkers to stabilize the extracellular domains of GluD2 receptors, allowing them to function as ionotropic excitatory neurotransmitter receptors in synapses.

13.
Pharmacol Rev ; 73(4): 298-487, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34753794

RESUMO

Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.


Assuntos
Receptores de Glutamato , Receptores Ionotrópicos de Glutamato , Animais , Sistema Nervoso Central , Ácido Glutâmico , Humanos , Neurotransmissores , Receptores Ionotrópicos de Glutamato/genética
14.
Membranes (Basel) ; 11(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34436376

RESUMO

Kainate receptors are members of the ionotropic glutamate receptor family. They form cation-specific transmembrane channels upon binding glutamate that desensitize in the continued presence of agonists. Concanavalin A (Con-A), a lectin, stabilizes the active open-channel state of the kainate receptor and reduces the extent of desensitization. In this study, we used single-molecule fluorescence resonance energy transfer (smFRET) to investigate the conformational changes underlying kainate receptor modulation by Con-A. These studies showed that Con-A binding to GluK2 homomeric kainate receptors resulted in closer proximity of the subunits at the dimer-dimer interface at the amino-terminal domain as well as between the subunits at the dimer interface at the agonist-binding domain. Additionally, the modulation of receptor functions by monovalent ions, which bind to the dimer interface at the agonist-binding domain, was not observed in the presence of Con-A. Based on these results, we conclude that Con-A modulation of kainate receptor function is mediated by a shift in the conformation of the kainate receptor toward a tightly packed extracellular domain.

15.
Front Genet ; 12: 694312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34413877

RESUMO

N-Methyl-D-aspartate receptors (NMDARs) are highly expressed in brain and play important roles in neurodevelopment and various neuropathologic conditions. Here, we describe a new phenotype in an individual associated with a novel de novo deleterious variant in GRIN1 (c.1595C>A, p.Pro532His). The clinical phenotype is characterized with developmental encephalopathy, striking stimulus-sensitive myoclonus, and frontal lobe and frontal white matter hypoplasia, with no apparent seizures detected. NMDARs that contained the P532H within the glycine-binding domain of GluN1 with either the GluN2A or GluN2B subunits were evaluated for changes in their pharmacological and biophysical properties, which surprisingly revealed only modest changes in glycine potency but a significant decrease in glutamate potency, an increase in sensitivity to endogenous zinc inhibition, a decrease in response to maximally effective concentrations of agonists, a shortened synaptic-like response time course, a decreased channel open probability, and a reduced receptor cell surface expression. Molecule dynamics simulations suggested that the variant can lead to additional interactions across the dimer interface in the agonist-binding domains, resulting in a more open GluN2 agonist-binding domain cleft, which was also confirmed by single-molecule fluorescence resonance energy transfer measurements. Based on the functional deficits identified, several positive modulators were evaluated to explore potential rescue pharmacology.

16.
Cell Rep ; 36(3): 109396, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289359

RESUMO

Many neurological disorders show an increased prevalence of GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs), which dramatically alters synaptic function. However, the molecular mechanism underlying this distinct synaptic plasticity remains enigmatic. Here, we show that nerve injury potentiates postsynaptic, but not presynaptic, CP-AMPARs in the spinal dorsal horn via α2δ-1. Overexpressing α2δ-1, previously regarded as a Ca2+ channel subunit, augments CP-AMPAR levels at the cell surface and synapse. Mechanistically, α2δ-1 physically interacts with both GluA1 and GluA2 via its C terminus, inhibits the GluA1/GluA2 heteromeric assembly, and increases GluA2 retention in the endoplasmic reticulum. Consequently, α2δ-1 diminishes the availability and synaptic expression of GluA1/GluA2 heterotetramers in the spinal cord in neuropathic pain. Inhibiting α2δ-1 with gabapentin or disrupting the α2δ-1-AMPAR complex fully restores the intracellular assembly and synaptic dominance of heteromeric GluA1/GluA2 receptors. Thus, α2δ-1 is a pivotal AMPAR-interacting protein that controls the subunit composition and Ca2+ permeability of postsynaptic AMPARs.


Assuntos
Subunidades Proteicas/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Adolescente , Adulto , Animais , Cálcio/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Feminino , Gabapentina/farmacologia , Produtos do Gene tat/farmacologia , Células HEK293 , Humanos , Masculino , Neuralgia/metabolismo , Neuralgia/patologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Fenótipo , Ligação Proteica/efeitos dos fármacos , Ratos Sprague-Dawley , Medula Espinal/patologia , Sinapses/efeitos dos fármacos , Adulto Jovem
17.
Methods Enzymol ; 652: 193-212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34059282

RESUMO

Single molecule Förster Resonance Energy Transfer (smFRET) allows us to measure variation in distances between donor and acceptor fluorophores attached to a protein, providing the conformational landscape of the protein with respect to this specific distance. smFRET can be performed on freely diffusing molecules or on tethered molecules. Here, we describe the tethered method used to study ionotropic glutamate receptors, which allows us to track the changes in FRET as a function of time, thus providing information on the conformations sampled and kinetics of conformational changes in the millisecond to second time scale. Strategies for attaching fluorophores to the proteins, methods for acquiring and analyzing the smFRET trajectories, and limitations are discussed.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Receptores de Glutamato/química , Cinética , Conformação Proteica
18.
Biophys J ; 119(11): 2349-2359, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098865

RESUMO

N-methyl-D-aspartate (NMDA) receptors mediate synaptic excitatory signaling in the mammalian central nervous system by forming calcium-permeable transmembrane channels upon binding glutamate and coagonist glycine. Ca2+ influx through NMDA receptors leads to channel inactivation through a process mediated by resident calmodulin bound to the intracellular C-terminal segment of the GluN1 subunit of the receptor. Using single-molecule FRET investigations, we show that in the presence of calcium-calmodulin, the distance across the two GluN1 subunits at the entrance of the first transmembrane segment is shorter and the bilobed cleft of the glycine-binding domain in GluN1 is more closed when bound to glycine and glutamate relative to what is observed in the presence of barium-calmodulin. Consistent with these observations, the glycine deactivation rate is slower in the presence of calcium-calmodulin. Taken together, these results show that the binding of calcium-calmodulin to the C-terminus has long-range allosteric effects on the extracellular segments of the receptor that may contribute to the calcium-dependent inactivation.


Assuntos
Cálcio , Receptores de N-Metil-D-Aspartato , Animais , Cálcio/metabolismo , Calmodulina , Ácido Glutâmico , Glicina
19.
Biophys J ; 119(10): 1929-1936, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33096078

RESUMO

Single-molecule Förster resonance energy transfer (smFRET) is a powerful technique for investigating the structural dynamics of biological macromolecules. smFRET reveals the conformational landscape and dynamic changes of proteins by building on the static structures found using cryo-electron microscopy, x-ray crystallography, and other methods. Combining smFRET with static structures allows for a direct correlation between dynamic conformation and function. Here, we discuss the different experimental setups, fluorescence detection schemes, and data analysis strategies that enable the study of structural dynamics of glutamate signaling across various timescales. We illustrate the versatility of smFRET by highlighting studies of a wide range of questions, including the mechanism of activation and transport, the role of intrinsically disordered segments, and allostery and cooperativity between subunits in biological systems responsible for glutamate signaling.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas , Microscopia Crioeletrônica , Glutamatos , Conformação Molecular
20.
J Neurosci ; 40(45): 8629-8636, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33046551

RESUMO

Zn2+ has been shown to have a wide range of modulatory effects on neuronal AMPARs. However, the mechanism of modulation is largely unknown. Here we show that Zn2+ inhibits GluA2(Q) homomeric receptors in an activity- and voltage-dependent manner, indicating a pore block mechanism. The rate of inhibition is slow, in the hundreds of milliseconds at millimolar Zn2+ concentrations; hence, the inhibition is only observed in the residual nondesensitizing currents. Consequently, the inhibition is higher for GluA2 receptors in complex with auxiliary subunits γ2 and γ8 where the residual activation is larger. The extent of inhibition is also dependent on charge at site 607, the site that undergoes RNA editing in GluA2 subunits replacing glutamine to arginine, with the percent inhibition being lower and IC50 being higher for the edited GluA2(R) relative to unedited GluA2(Q) and to GluA2(Q607E), a mutation observed in the genetic screen of a patient exhibiting developmental delays. We also show that Zn2+ inhibition is significant during rapid repetitive activity with pulses of millimolar concentrations of glutamate in both receptors expressed in HEK cells as well as in native receptors in cortical neurons of C57BL/6J mice of either sex, indicating a physiological relevance of this inhibition.SIGNIFICANCE STATEMENT Zn2+ is present along with glutamate in synaptic vesicles and coreleased during synaptic transmission, modulating the postsynaptic ionotropic glutamate receptors. While Zn2+ inhibition of the NMDA subtype of the ionotropic glutamate receptors is well characterized, the mechanism of modulation of the AMPA subtype is much less known. Here we have systematically studied Zn2+ inhibition of AMPARs by varying calcium permeability, auxiliary subunits, and activation levels and show that Zn2+ inhibits AMPARs in an activity-dependent manner, opening up this pathway as a means to pharmacologically modulate the receptors.


Assuntos
Receptores de AMPA/antagonistas & inibidores , Zinco/farmacologia , Animais , Córtex Cerebral/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Edição de RNA , Receptores de AMPA/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...