Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(7): e2305868, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798640

RESUMO

Transition metal nitrides (TMNs) are promising electrode materials for use in high-performance electrochemical energy storage devices due to their unique properties, which include a high conductivity, pseudocapacitance, and energy density. However, structural instability during electrochemical reactions has limited their practical deployment for energy storage devices. In this context, the present study fabricated a CoOx @NiMoN/Ti3 C2 Tx electrode via in situ growth on Ni foam using hydrothermal treatment with post-nitrogenization. The effect of atomic layer deposition (ALD) of CoOx on the TMN/Ti3 C2 Tx interface and the consequent electrochemical charge storage mechanisms are investigated in detail. The proposed CoOx @NiMoN/Ti3 C2 Tx electrode delivers an impressive specific capacity in a 2 m potassium hydroxide (KOH) electrolyte and is then employed in both a hybrid solid-state supercapacitor (HSSC) with reduced graphene oxide and a symmetric SC in a 2 m KOH + polyvinyl alcohol (PVA) gel electrolyte. Outstanding charge storage and high capacity retention during cyclic testing are observed for both energy storage devices. The exceptional electrochemical performance of the fabricated electrode is a result of its high conductivity and high number of active sites. Here a feasible new strategy is demonstrated for the fabrication of stable energy storage devices with a high energy density using TMNs and MXenes.

2.
Environ Sci Pollut Res Int ; 29(30): 45601-45611, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35147877

RESUMO

Improvements in the geometry of solar towers are explained in this study. Both computational and experimental studies are carried out. Three different solar towers of 1:60, 1:70, and 1:122 scale ratios are taken for the study. All the studies are carried out in an open atmosphere, where a hot wire anemometer is used to measure the peak velocity at the collector-tower junction. The collector geometry is kept flat, inclined, and semi-divergent. The tower geometry is modified from the straight tower into semi-divergent and fully divergent towers. The fully divergent tower with a semi-convergent collector achieves the highest power output among the other two models. The area convergence is the prime factor for an increase in peak velocity. The divergent tower with a semi-convergent collector achieves 54% more power output than a cylindrical tower with a flat collector.

3.
Chemosphere ; 287(Pt 2): 132055, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34496336

RESUMO

The photocatalytic performance of a semiconducting catalytic system is strongly influenced by charge-carrier separation rate, charge transport properties, surface area, utilization of light energy, and interface bonding. Herein, a series of bismuth vanadate (BiVO4) samples were prepared via hydrothermal method by changing the volume ratios of ethelene glycol and ethanol as a solvent mixture for bismuth precursors. Further, the optimized BiVO4 sheets with hierarchical morphology were used to construct an interface with rod-like g-C3N4 materials, which was confirmed by HRSEM and HRTEM. Due to the formation of an effective interface bonding between BiVO4/g-C3N4, the photoinduced charge carrier's recombination rate was suppressed as confirmed by the PL analysis. The prepared BiVO4/g-C3N4 sample were used to assess the photodegradation efficiency of Rhodamine B (RhB) under direct sunlight irradiation and the photocatalysts degraded ~92.8% of RhB within 2 h. The TOC measurements revealed a 66.4% mineralization efficiency for RhB. In addition, the radical trapping experiments demonstrated that superoxide and hydroxyl radicals are the main reactive species for the degradation. Based on the experimental evidences, a plausible charge transfer mechanism has been proposed. The enhanced photocatalytic activity has been mainly attributed to the inhibition of the recombination rate, enhanced charge carrier transfer efficiency, and high rate of production of reactive species.


Assuntos
Bismuto , Poluentes Ambientais , Nitrilas , Luz Solar , Vanadatos
4.
RSC Adv ; 10(15): 8880-8894, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35496567

RESUMO

Herein, a strong redox ability photocatalyst of CdCuS solid solution composited with pyrochlore like Bi2Zr2O7 has been fabricated by the simple hydrothermal method. The robust CdCuS solid solution materials perform the supporting role to the Bi2Zr2O7 nano materials. The structural, optical, valence and vibrational states of the prepared heterostructure materials were analyzed using various characterization techniques. The photocatalytic activity of the as-synthesized Bi2Zr2O7/CdCuS heterostructure has been verified under direct solar light and ambient conditions. The synthesized Bi2Zr2O7/CdCuS nano combination exhibits a better photocatalytic activity for the removal of methylene blue and 4-nitrophenol organic probe molecules. The heterostructure formation between the samples is confirmed by HRTEM analysis. The improved rate of the photocatalytic reaction of the samples is attributed to the formation of heterostructures at the interface. The close interfacial contact between the two materials discloses the effective charge transfer, which leads to suppressed charge carrier recombination. The enhanced photo catalytic activity of redox-mediator-free-Bi2Zr2O7/CdCuS heterostructure, possibly will be credited to the robust redox ability and the several charge transfer channels in the tight contact. The chief radicals produced in the catalytic reduction reaction have been predicted by the scavenger trapping methods and the results are discussed in detail. The obtained information from this study on Bi2Zr2O7/CdCuS delivers some new visions for the design of active photocatalysts with multiple benefits.

5.
J Environ Manage ; 247: 104-114, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31234045

RESUMO

The BiFeO3/V2O5 has been successfully synthesized by simple annealing of BiFeO3 nanoplates and V2O5 nanoflower. The phase, structural, optical properties and chemical state of the BiFeO3, V2O5 and different composition of BiFeO3/V2O5 samples were comparatively characterized by various spectroscopic and microscopic techniques. The prepared catalyst exhibits unique photo catalytic and post-oxidation/reduction ability for removal of various (MB, Phenol, CV, RhB) water organic pollutants. Compared to pure BiFeO3 and V2O5, the different Wt % of BiFeO3/V2O5 composition exhibited higher photo catalytic activity. The fortunate BiFeO3/V2O5 interface hybrid photo catalyst makes a significant impact in the enhancement of photo catalytic reaction. This remarkable efficiency could be ascribed to the synergistic effect between the V2O5 petals and BiFeO3 plates. The exceptional morphology, increased surface area, uniformity, less-agglomerated spreading could increase the ability of visible light response, which lead the improved electron transport ability and the higher charge separation. The enhanced rate of photo generated charge carriers separations were evinced by the EIS and PL spectrum measurements. The allowed radical trapping experiment divulge that the hole (h+), and super oxide radical (O2-) are the minimized effect in degradation, on the other hand hydroxyl radical (OH) is plays the foremost role and act as the active radicals in the catalytic organism. In relations of above investigation, a probable photo degradation mechanism of the as-synthesized photo catalyst is carefully explicated. This effort delivers an effective approach to design and fabricate the efficient photo catalyst through integrating of materials, which has a potential for industrial waste water purification.


Assuntos
Purificação da Água , Catálise , Luz , Oxirredução , Fenol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...