Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 2926, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050037

RESUMO

X-ray detectors are critical to healthcare diagnostics, cancer therapy and homeland security, with many potential uses limited by system cost and/or detector dimensions. Current X-ray detector sensitivities are limited by the bulk X-ray attenuation of the materials and consequently necessitate thick crystals (~1 mm-1 cm), resulting in rigid structures, high operational voltages and high cost. Here we present a disruptive, flexible, low cost, broadband, and high sensitivity direct X-ray transduction technology produced by embedding high atomic number bismuth oxide nanoparticles in an organic bulk heterojunction. These hybrid detectors demonstrate sensitivities of 1712 µC mGy-1 cm-3 for "soft" X-rays and ~30 and 58 µC mGy-1 cm-3 under 6 and 15 MV "hard" X-rays generated from a medical linear accelerator; strongly competing with the current solid state detectors, all achieved at low bias voltages (-10 V) and low power, enabling detector operation powered by coin cell batteries.

2.
Sci Rep ; 6: 37334, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27876858

RESUMO

Carbon fibre reinforced polymers (CFRP) were introduced to the aerospace, automobile and civil engineering industries for their high strength and low weight. A key feature of CFRP is the polymer sizing - a coating applied to the surface of the carbon fibres to assist handling, improve the interfacial adhesion between fibre and polymer matrix and allow this matrix to wet-out the carbon fibres. In this paper, we introduce an alternative material to the polymer sizing, namely carbon nanotubes (CNTs) on the carbon fibres, which in addition imparts electrical and thermal functionality. High quality CNTs are grown at a high density as a result of a 35 nm aluminium interlayer which has previously been shown to minimise diffusion of the catalyst in the carbon fibre substrate. A CNT modified-CFRP show 300%, 450% and 230% improvements in the electrical conductivity on the 'surface', 'through-thickness' and 'volume' directions, respectively. Furthermore, through-thickness thermal conductivity calculations reveal a 107% increase. These improvements suggest the potential of a direct replacement for lightning strike solutions and to enhance the efficiency of current de-icing solutions employed in the aerospace industry.

3.
J Phys Chem C Nanomater Interfaces ; 117(34): 17850-17858, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-24009781

RESUMO

ZnO nanostructures with different morphologies (nanowires, nanodisks, and nanostars) were synthesized hydrothermally. Gas sensing properties of the as-grown nanostructures were investigated under thermal and UV activation. The performance of the ZnO nanodisk gas sensor was found to be superior to that of other nanostructures (Sg ∼ 3700% to 300 ppm ethanol and response time and recovery time of 8 and 13 s). The enhancement in sensitivity is attributed to the surface polarities of the different structures on the nanoscale. Furthermore, the selectivity of the gas sensors can be achieved by controlling the UV intensity used to activate these sensors. The highest sensitivity value for ethanol, isopropanol, acetone, and toluene are recorded at the optimal UV intensity of 1.6, 2.4, 3.2, and 4 mW/cm2, respectively. Finally, the UV activation mechanism for metal oxide gas sensors is compared with the thermal activation process. The UV activation of analytes based on solution processed ZnO structures pave the way for better quality gas sensors.

4.
Nanotechnology ; 21(36): 365502, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20702931

RESUMO

Pulsed laser irradiation is used to seed the low-temperature hydrothermal growth of ZnO nanorods. UV laser irradiation produces ZnO nanoparticles in solution that act as nucleation seeds for the subsequent hydrothermal growth of the nanorods. By systematically varying the seed density and/or the concentration of the reactants, the diameter of the nanorods can be controlled over a wide range with a narrow size distribution. The nanorods are linked into multi-pod structures, due to nucleation at a central seed, but ultrasonic processing of the solutions is shown to yield isolated nanorods. Three-dimensional networks of these multi-pod structures are fabricated by drop-casting the solutions onto inter-digitated electrodes. These devices are used to detect ethanol, water vapour and UV light exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...