Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 8(2): e2300223, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37330642

RESUMO

Perovskite solar cells (PSCs) have shown rapid development recently, whereas nonideal stability remains the chief obstacle toward commercialization. Thus, it is of utmost importance to probe the degradation pathway for the entire device. Here, the extrinsic stability of inverted PSCs (IPSCs) is investigated by using standard shelf-life testing based on the International Summit on Organic Photovoltaic Stability protocols (ISOS-D-1). During the long-term assessment of 1700 h, the degraded power conversion efficiency is mainly caused by the fill factor (53% retention) and short-circuit current density (71% retention), while the open-circuit voltage still maintains 97% of the initial values. Further absorbance evolution and density functional theory calculations disclose that the perovskite rear-contact side, in particular for the perovskite/fullerene interface, is the predominant degradation pathway. This study contributes to understanding the aging mechanism and enhancing the durability of IPSCs for future applications.

2.
Adv Sci (Weinh) ; 10(35): e2304261, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37916896

RESUMO

Organic semiconductors are a promising material candidate for X-ray detection. However, the low atomic number (Z) of organic semiconductors leads to poor X-ray absorption thus restricting their performance. Herein, the authors propose a new strategy for achieving high-sensitivity performance for X-ray detectors based on organic semiconductors modified with high -Z heteroatoms. X-ray detectors are fabricated with p-type organic semiconductors containing selenium heteroatoms (poly(3-hexyl)selenophene (P3HSe)) in blends with an n-type fullerene derivative ([6,6]-Phenyl C71 butyric acid methyl ester (PC70 BM). When characterized under 70, 100, 150, and 220 kVp X-ray radiation, these heteroatom-containing detectors displayed a superior performance in terms of sensitivity up to 600 ± 11 nC Gy-1  cm-2 with respect to the bismuth oxide (Bi2 O3 ) nanoparticle (NP) sensitized organic detectors. Despite the lower Z of selenium compared to the NPs typically used, the authors identify a more efficient generation of electron-hole pairs, better charge transfer, and charge transport characteristics in heteroatom-incorporated detectors that result in this breakthrough detector performance. The authors also demonstrate flexible X-ray detectors that can be curved to a radius as low as 2 mm with low deviation in X-ray response under 100 repeated bending cycles while maintaining an industry-standard ultra-low dark current of 0.03 ± 0.01 pA mm-2 .

3.
Adv Sci (Weinh) ; 9(2): e2101746, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34755497

RESUMO

Curved X-ray detectors have the potential to revolutionize diverse sectors due to benefits such as reduced image distortion and vignetting compared to their planar counterparts. While the use of inorganic semiconductors for curved detectors are restricted by their brittle nature, organic-inorganic hybrid semiconductors which incorporated bismuth oxide nanoparticles in an organic bulk heterojunction consisting of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C71 butyric acid methyl ester (PC70 BM) are considered to be more promising in this regard. However, the influence of the P3HT molecular weight on the mechanical stability of curved, thick X-ray detectors remains less well understood. Herein, high P3HT molecular weights (>40 kDa) are identified to allow increased intermolecular bonding and chain entanglements, resulting in X-ray detectors that can be curved to a radius as low as 1.3 mm with low deviation in X-ray response under 100 repeated bending cycles while maintaining an industry-standard dark current of <1 pA mm-2 and a sensitivity of ≈ 0.17 µC Gy-1 cm-2 . This study identifies a crucial missing link in the development of curved detectors, namely the importance of the molecular weight of the polymer semiconductors used.

4.
ACS Nano ; 13(6): 6973-6981, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31125201

RESUMO

Hybrid inorganic-in-organic semiconductors are an attractive class of materials for optoelectronic applications. Traditionally, the thicknesses of organic semiconductors are kept below 1 µm due to poor charge transport in such systems. However, recent work suggests that charge carriers in such organic semiconductors can be transported over centimeter length scales opposing this view. In this work, a unipolar X-ray photoconductor based on a bulk heterojunction architecture, consisting of poly(3-hexylthiophene), a C70 derivative, and high atomic number bismuth oxide nanoparticles operating in the 0.1-1 mm thickness regime is demonstrated, having a high sensitivity of ∼160 µC mGy-1 cm-3. The high performance enabled by hole drift lengths approaching a millimeter facilitates a device architecture allowing a high fraction of the incident X-rays to be attenuated. An X-ray imager is demonstrated with sufficient resolution for security applications such as portable baggage screening at border crossings and public events and scalable medical applications.

5.
Nanotechnology ; 28(11): 114004, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28119511

RESUMO

Mixed halide Perovskite solar cells (PSCs) are commonly produced by depositing PbCl2 and CH3NH3I from a common solvent followed by thermal annealing, which in an up-scaled manufacturing process is likely to take place under ambient conditions. However, it has been reported that, similar to the effects of thermal annealing, ambient humidity also affects the crystallisation behaviour and subsequent growth of the Perovskite films. This implies that both of these factors must be accounted for in solar cell production. In this work, we report for the first time the correlation between the annealing time, relative humidity (RH) and device performance for inverted, mixed halide CH3NH3PbI(3-x)Cl x PSCs with active area ≈1 cm2. We find a trade-off between ambient humidity and the required annealing time to produce efficient solar cells, with low humidities needing longer annealing times and vice-versa. At around 20% RH, device performance weakly depends on annealing time, but at higher (30%-40% RH) or lower (0%-15% RH) humidities it is very sensitive. Processing in humid environments is shown to lead to the growth of both larger Perovskite grains and larger voids; similar to the effect of thermal annealing, which also leads to grain growth. Therefore, samples which are annealed for too long under high humidity show loss of performance due to low open circuit voltage caused by an increased number of shunt paths. Based on these results it is clear that humidity and annealing time are closely interrelated and both are important factors affecting the performance of PSCs. The findings of this work open a route for reduced annealing times to be employed by control of humidity; critical in roll-to-roll manufacture where low manufacturing time is preferred for cost reductions.

6.
Nanoscale ; 7(34): 14241-7, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26256946

RESUMO

We report a ZnO interfacial layer based on an environmentally friendly aqueous precursor for organic photovoltaics. Inverted PCDTBT devices based on this precursor show power conversion efficiencies of 6.8-7%. Unencapsulated devices stored in air display prolonged lifetimes extending over 200 hours with less than 20% drop in efficiency compared to devices based on the standard architecture.

7.
Adv Mater ; 26(13): 2078-83, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24382671

RESUMO

Solution processed core-shell nano-structures of metal oxide-reduced graphene oxide (RGO) are used as improved electron transport layers (ETL), leading to an enhancement in photocurrent charge transport in PCDTBT:PC70 BM for both single cell and module photovoltaic devices. As a result, the power conversion efficiency for the devices with RGO-metal oxides for ETL increases 8% in single cells and 20% in module devices.

8.
Nanoscale ; 5(18): 8411-27, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23900455

RESUMO

Recent developments in solution processable single junction polymer solar cells have led to a significant improvement in power conversion efficiencies from ∼5% to beyond 9%. While much of the initial efficiency improvements were driven through judicious design of donor polymers, it is the engineering of device architectures through the incorporation of inorganic nanostructures and better processing that has continued the efficiency gains. Inorganic nano-components such as carbon nanotubes, graphene and its derivatives, metal nanoparticles and metal oxides have played a central role in improving device performance and longevity beyond those achieved by conventional 3G polymer solar cells. The present work aims to summarise the diverse roles played by the nanosystems and features in state of the art next generation (4G) polymer solar cells. The challenges associated with the engineering of such devices for future deployment are also discussed.


Assuntos
Polímeros/química , Energia Solar , Eletrodos , Grafite/química , Nanopartículas Metálicas/química , Metais/química , Nanotubos de Carbono/química , Óxidos/química , Poliestirenos/química , Tiofenos/química
9.
ACS Nano ; 7(1): 556-65, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23234537

RESUMO

Transparent, highly percolated networks of regioregular poly(3-hexylthiophene) (rr-P3HT)-wrapped semiconducting single-walled carbon nanotubes (s-SWNTs) are deposited, and the charge transfer processes of these nanohybrids are studied using spectroscopic and electrical measurements. The data disclose hole doping of s-SWNTs by the polymer, challenging the prevalent electron-doping hypothesis. Through controlled fabrication, high- to low-density nanohybrid networks are achieved, with low-density hybrid carbon nanotube networks tested as hole transport layers (HTLs) for bulk heterojunction (BHJ) organic photovoltaics (OPV). OPVs incorporating these rr-P3HT/s-SWNT networks as the HTL demonstrate the best large area (70 mm(2)) carbon nanotube incorporated organic solar cells to date with a power conversion efficiency of 7.6%. This signifies the strong capability of nanohybrids as an efficient hole extraction layer, and we believe that dense nanohybrid networks have the potential to replace expensive and material scarce inorganic transparent electrodes in large area electronics toward the realization of low-cost flexible electronics.


Assuntos
Fontes de Energia Elétrica , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Compostos Organosselênicos/química , Energia Solar , Transporte de Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Partícula
10.
Adv Mater ; 23(33): 3796-800, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21766352

RESUMO

Photoluminescence quenching is observed in acid functionalized multiwall carbon nanotubes incorporated polymer: fullerene films, suggesting efficient charge transfer, believed to be due to nanotubes acting as exciton dissociation centres. The fabricated photovoltaic devices with triple heterojunction interfaces show increased short circuit current density compared to the device without nanotubes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...