Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2316032121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38451945

RESUMO

Nitrogen-vacancy (NV) centers in diamond are a promising platform for nanoscale NMR sensing. Despite significant progress toward using NV centers to detect and localize nuclear spins down to the single spin level, NV-based spectroscopy of individual, intact, arbitrary target molecules remains elusive. Such sensing requires that target molecules are immobilized within nanometers of NV centers with long spin coherence. The inert nature of diamond typically requires harsh functionalization techniques such as thermal annealing or plasma processing, limiting the scope of functional groups that can be attached to the surface. Solution-phase chemical methods can be readily generalized to install diverse functional groups, but they have not been widely explored for single-crystal diamond surfaces. Moreover, realizing shallow NV centers with long spin coherence times requires highly ordered single-crystal surfaces, and solution-phase functionalization has not yet been shown with such demanding conditions. In this work, we report a versatile strategy to directly functionalize C-H bonds on single-crystal diamond surfaces under ambient conditions using visible light, forming C-F, C-Cl, C-S, and C-N bonds at the surface. This method is compatible with NV centers within 10 nm of the surface with spin coherence times comparable to the state of the art. As a proof-of-principle demonstration, we use shallow ensembles of NV centers to detect nuclear spins from surface-bound functional groups. Our approach to surface functionalization opens the door to deploying NV centers as a tool for chemical sensing and single-molecule spectroscopy.

2.
Phys Rev Lett ; 123(14): 146804, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702182

RESUMO

Surfaces enable useful functionalities for quantum systems, e.g., as interfaces to sensing targets, but often result in surface-induced decoherence where unpaired electron spins are common culprits. Here we show that the coherence time of a near-surface qubit is increased by coherent radio-frequency driving of surface electron spins, where we use a diamond nitrogen-vacancy (NV) center as a model qubit. This technique is complementary to other methods of suppressing decoherence and, importantly, requires no additional materials processing or control of the qubit. Further, by combining driving with the increased magnetic susceptibility of the double-quantum basis, we realize an overall fivefold sensitivity enhancement in NV magnetometry. Informed by our results, we discuss a path toward relaxation-limited coherence times for near-surface NV centers. The surface-spin driving technique presented here is broadly applicable to a wide variety of qubit platforms afflicted by surface-induced decoherence.

3.
Phys Rev Lett ; 122(7): 076101, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848640

RESUMO

The charge degree of freedom in solid-state defects fundamentally underpins the electronic spin degree of freedom, a workhorse of quantum technologies. Here we measure, analyze, and control charge-state behavior in individual near-surface nitrogen-vacancy (NV) centers in diamond, where NV^{-} hosts the metrologically relevant electron spin. We find that NV^{-} initialization fidelity varies between individual centers and over time; we alleviate the deleterious effects of reduced NV^{-} initialization fidelity via logic-based initialization. Importantly, we also show that NV^{-} can ionize in the dark on experimentally relevant timescales, and we introduce measurement protocols that mitigate the compromising effects of charge conversion on spin measurements. We identify tunneling to a single local electron trap as the mechanism for ionization in the dark, and we develop novel NV-assisted techniques to control and read out the trap charge state. Our understanding and command of the NV's local electrostatic environment will simultaneously guide materials design and provide unique functionalities with NV centers.

4.
Nat Commun ; 9(1): 2406, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921836

RESUMO

The electrical conductivity of a material can feature subtle, non-trivial, and spatially varying signatures with critical insight into the material's underlying physics. Here we demonstrate a conductivity imaging technique based on the atom-sized nitrogen-vacancy (NV) defect in diamond that offers local, quantitative, and non-invasive conductivity imaging with nanoscale spatial resolution. We monitor the spin relaxation rate of a single NV center in a scanning probe geometry to quantitatively image the magnetic fluctuations produced by thermal electron motion in nanopatterned metallic conductors. We achieve 40-nm scale spatial resolution of the conductivity and realize a 25-fold increase in imaging speed by implementing spin-to-charge conversion readout of a shallow NV center. NV-based conductivity imaging can probe condensed-matter systems in a new regime not accessible to existing technologies, and as a model example, we project readily achievable imaging of nanoscale phase separation in complex oxides.

5.
Nano Lett ; 15(5): 2887-91, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25839083

RESUMO

Understanding plasma etch damage on near-surface nitrogen vacancy (NV) centers in diamond is essential for preserving NV emission in photonic structures and magnetometry systems. We have developed a methodology to compare the optical properties of ensemble NV centers initially 70 nm from the surface brought closer to the surface through etching with O2 plasmas in three different reactors. We employ a conventional reactive ion etcher, a barrel etcher, and a downstream etcher. We find that, irrespective of the etcher used, NV luminescence dims steadily as NVs are brought closer to the surface due to optical and surface effects. When NVs are less than 40 nm from the surface, differences in damage from the three different plasma processes affect the NV emission intensity in different ways. Diamond that is etched using the conventional etching method shows a greatly reduced NV luminescence, whereas NVs 15 nm from the surface still survive when the diamond is etched in the downstream reactor. As a result, downstream etching provides a possible alternative method for low damage etching of diamond for preservation of near surface NV properties.

6.
Nat Commun ; 5: 4429, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-25034828

RESUMO

The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high-quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen-vacancy centre spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen-vacancy spin-strain interaction has not been well characterized. Here, we demonstrate dynamic, strain-mediated coupling of the mechanical motion of a diamond cantilever to the spin of an embedded nitrogen-vacancy centre. Via quantum control of the spin, we quantitatively characterize the axial and transverse strain sensitivities of the nitrogen-vacancy ground-state spin. The nitrogen-vacancy centre is an atomic scale sensor and we demonstrate spin-based strain imaging with a strain sensitivity of 3 × 10(-6) strain Hz(-1/2). Finally, we show how this spin-resonator system could enable coherent spin-phonon interactions in the quantum regime.

7.
Science ; 335(6076): 1603-6, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22362881

RESUMO

Mechanical systems can be influenced by a wide variety of small forces, ranging from gravitational to optical, electrical, and magnetic. When mechanical resonators are scaled down to nanometer-scale dimensions, these forces can be harnessed to enable coupling to individual quantum systems. We demonstrate that the coherent evolution of a single electronic spin associated with a nitrogen vacancy center in diamond can be coupled to the motion of a magnetized mechanical resonator. Coherent manipulation of the spin is used to sense driven and Brownian motion of the resonator under ambient conditions with a precision below 6 picometers. With future improvements, this technique could be used to detect mechanical zero-point fluctuations, realize strong spin-phonon coupling at a single quantum level, and implement quantum spin transducers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...