Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20460, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993479

RESUMO

There has been significant research focused on the development of stretchable materials that can provide a large area with minimal material usage for use in solar cells and displays. However, most materials exhibit perpendicular shrinkage when stretched, which is particularly problematic for polymer-based substrates commonly used in stretchable devices. To address this issue, biaxial strain-controlled substrates have been proposed as a solution to increase device efficiency and conserve material resources. In this study, we present the design and fabrication of a biaxial strain-controlled substrate with a re-entrant honeycomb structure and a negative Poisson's ratio. Using a precisely machined mold with a shape error of less than 0.15%, we successfully fabricated polydimethylsiloxane substrates with a 500 µm thick re-entrant honeycomb structure, resulting in a 19.1% reduction in perpendicular shrinkage. This improvement translates to a potential increase in device efficiency by 9.44% and an 8.60% reduction in material usage for substrate fabrication. We demonstrate that this design and manufacturing method can be applied to the fabrication of efficient stretchable devices, such as solar cells and displays.

2.
Opt Express ; 30(16): 29760-29771, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299143

RESUMO

The manufacturing process for an ultrawide flexible microwave absorbing meta-surface was developed and optimized experimentally. The developed replication process consists of four main steps to demonstrate double-square loop array meta-structures: (1) mechanical machining of a master mold, (2) soft mold replication and patterned film imprinting, (3) conductive ink blade filling, (4) lamination of a base flexible film to meta sheet. Based on experimental optimization of the individual steps, the manufacturing process for a large-area flexible meta-film was established successfully. The feasibility of a developed process has been demonstrated with a 200 mm × 500 mm fabricated meta-film with a focus on microwave absorbing uniformity in the X-band region.

3.
Sci Rep ; 12(1): 7555, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534505

RESUMO

In ultra-precision planing process, the analysis of the critical depth of cut (DOC) is required to reduce the edge blunt and micro burrs produced by size effect which decreases of the effective area for high luminance retroreflector. However, since the machining characteristics are different according to cutting tool shape, machining material, and cutting condition, determine of the critical DOC is difficult without a comparison of machined surfaces under various DOC measured by ultra-high resolution measuring instrument. In this study, the critical DOC was analyzed using cutting force and tool vibration signals. The specific cutting energy was calculated by cutting force and cross-sectional area to analyze the stress variation according to DOC. Also, acceleration signals were converted to frequency spectrum that analyze dominant vibrating direction of the cutting tool by variation of cutting characteristic. It was confirmed that the method of using tool vibration more effective and accurate than specific cutting energy through validation of the comparison between results from analyze of the vibration signals and direction measuring surfaces. The master mold with area of 250 mm2 was manufactured by applying analyzed critical DOC. In addition, the high luminance characteristic of a retroreflection film press formed by the master mold was confirmed.

4.
Sci Rep ; 11(1): 12767, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140536

RESUMO

Microwave absorbers using conductive ink are generally fabricated by printing an array pattern on a substrate to generate electromagnetic fields. However, screen printing processes are difficult to vary the sheet resistance values for different regions of the pattern on the same layer, because the printing process deposits materials at the same height over the entire surface of substrate. In this study, a promising manufacturing process was suggested for engraved resistive double square loop arrays with ultra-wide bandwidth microwave. The developed manufacturing process consists of a micro-end-milling, inking, and planing processes. A 144-number of double square loop array was precisely machined on a polymethyl methacrylate workpiece with the micro-end-milling process. After engraving array structures, the machined surface was completely covered with the developed conductive carbon ink with a sheet resistance of 15 Ω/sq. It was cured at room temperature. Excluding the ink that filled the machined double square loop array, overflowed ink was removed with the planing process to achieve full filled and isolated resistive array patterns. The fabricated microwave absorber showed a small radar cross-section with reflectance less than - 10 dB in the frequency band range of 8.0-14.6 GHz.

5.
Lab Chip ; 18(22): 3484-3491, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30303499

RESUMO

Optical diffraction tomography (ODT) enables the reconstruction of the three-dimensional (3D) refractive-index (RI) distribution of a biological cell, which provides invaluable information for cellular and subcellular structures in a non-invasive manner. However, ODT suffers from an inferior axial resolution, due to the limited accessible angles imposed by the numerical aperture of the objective lens. In this study, we propose and experimentally demonstrate an approach to enhance the 3D reconstruction performance in ODT. By employing trapezoidal micromirrors, side scattered signals from the sample are measured for various side plane-wave-illumination angles. By combining the side scattered fields with the forward scattered fields, the axial resolution and 3D image quality of ODT are improved, without changing optical instruments. The feasibility and applicability of the proposed method are demonstrated by reconstructing the 3D RI distribution of a red blood cell and HeLa cells in hydrogel. We also present systematic analyses of the improved 3D imaging performance using numerical simulations and experimental measurements for the 3D transfer function, a point object, and a microsphere. The analyses demonstrate an improved axial resolution of 0.31 µm, 4.8 times smaller than that of the conventional method. The proposed method enables the non-invasive and accurate 3D imaging of 3D cultured cells, which is crucial for cell biology studies.


Assuntos
Imageamento Tridimensional/instrumentação , Fenômenos Ópticos , Refratometria/instrumentação , Tomografia/instrumentação , Eritrócitos/citologia , Células HeLa , Humanos
6.
Anal Chem ; 90(3): 1827-1835, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29271639

RESUMO

A recent study of inertial microfluidics within nonrectangular cross-section channels showed that the inertial focusing positions changes with cross-sectional shapes; therefore, the cross-sectional shape can be a useful control parameter for microfluidic particle manipulations. Here, we conducted detail investigation on unique focusing position shift phenomena, which occurs strongly in channels with the cross-sectional shape of the isosceles right triangle. The top focusing positions shift along the channel walls to the direction away from the apex with increasing Reynolds number and decreasing particle size. A larger particle with its center further away from the side walls experiences shear gradient lift toward the apex, which leads to an opposite result with changes of Reynolds and particle size. The focusing position shift and the subsequent stabilization of corner focusing lead to changes in the number of focusing positions, which enables a novel method for microparticle separations with high efficiency (>95%) and resolution (<2 µm). The separation method based on equilibrium focusing; therefore, the operation is simple and no complex separation optimization is needed. Moreover, the separation threshold can be easily modulated with flow rate adjustment. Rare cell separation from blood cell was successfully demonstrated with spiked MCF-7 cells in blood by achieving the yield of ∼95% and the throughput of ∼106 cells/min.

7.
Sci Rep ; 7(1): 15378, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133862

RESUMO

The polarization anomaly refers to the polarization transition from longitudinal to shear modes along an equi-frequency contour of the same branch, which occurs only in some anisotropic elastic media, but the lack of natural materials exhibiting desired anisotropy makes its utilization impossible for potential novel applications. In this paper, we present a unique, non-resonant type elastic metamaterial made of off-centered, double-slit unit cells. We show that its wave polarization characteristics that determine the desired anomalous polarization for a certain application are tailorable. As an application, a mode converting wedge that transforms pure longitudinal into pure shear modes is designed by the proposed metamaterial. The physics involved in the mode conversion is investigated by simulations and experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA