Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Rep (Hoboken) ; 7(5): e2051, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38702989

RESUMO

BACKGROUND: Glioblastomas are characterized by aggressive behavior. Surgery, radiotherapy, and alkylating agents, including temozolomide are the most common treatment options for glioblastoma. Often, conventional therapies fail to treat these tumors since they develop drug resistance. There is a need for newer agents to combat this deadly tumor. Natural products such as gedunin have shown efficacy in several human diseases. A comprehensive study of gedunin, an heat shock protein (HSP)90 inhibitor, has not been thoroughly investigated in glioblastoma cell lines with different genetic modifications. AIMS: A key objective of this study was to determine how gedunin affects the biological and signaling mechanisms in glioblastoma cells, and to determine how those mechanisms affect the proliferation and apoptosis of glioblastoma cells. METHODS: The viability potentials of gedunin were tested using MTT, cell counts, and wound healing assays. Gedunin's effects on glioma cells were further validated using LDH and colony formation assays. In addition, we investigated the survival and apoptotic molecular signaling targets perturbed by gedunin using Western blot analysis and flow cytometry. RESULTS: Our results show that there was a reduction in cell viability and inhibition of wound healing in the cells tested. Western blot analysis of the gene expression data revealed genes such as EGFR and mTOR/Akt/NF kappa B to be associated with gedunin sensitivity. Gedunin treatment induced apoptosis by cleaving poly ADP-ribose polymerase, activating caspases, and downregulating BCL-xL. Based on these results, gedunin suppressed cell growth and HSP client proteins, resulting in apoptosis in glioblastoma cell lines. CONCLUSION: Our data provide in vitro support for the anticancer activity of gedunin in glioma cells by downregulating cancer survival proteins.


Assuntos
Apoptose , Proliferação de Células , Glioblastoma , Limoninas , Humanos , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia
2.
Front Pharmacol ; 13: 952169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199696

RESUMO

The epidermal growth factor (EGFR) receptor is frequently overexpressed in glioblastoma multiforme IV (GBM). Increased expression of EGFR leads to increased proliferation, decreased apoptosis, and increased resistance to chemotherapeutic agents. A small molecule called erlotinib inhibits EGFR receptors by binding to their adenosine triphosphate (ATP) binding sites. It is FDA approved to treat a variety of EGFR-mediated cancers. Several clinical trials have explored a combination of erlotinib with other agents to treat glioblastoma since it is believed that erlotinib would benefit patients with GBM with EGFR mutations or expression. Luteolin, a natural flavonoid, inhibits cell growth and induces apoptosis in cancer cells. We investigated the combined effects of erlotinib and luteolin on proliferation and apoptosis on glioblastoma cell lines overexpressing EGFR or glioma cells expressing truncated EGFR (ΔEGFR). In a concentration-dependent fashion, the combination of luteolin and erlotinib reduced cell proliferation (p < 0.05) and induced apoptosis by cleaving PARP and increasing caspase expression. In addition, the combination of luteolin and erlotinib reduced the phosphorylation of downstream EGFR cell signaling molecules such as Akt, NF kappa B, and STAT3 in a concentration-dependent manner. These findings suggest that combining luteolin with erlotinib offers a potential treatment strategy for glioblastoma multiforme IV.

3.
Anticancer Agents Med Chem ; 21(18): 2512-2519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33622229

RESUMO

BACKGROUND: Medicinal plants serve as sources of compounds used to treat other types of cancers. The root of the plant Lophira alata (Ochnaceae) has been used as a component of traditional herbal decoctions administered to cancer patients in southwestern Nigeria. However, the mechanism of the cytotoxic effects of Lophira alata alone or in the presence of phorbol ester has not been investigated in brain tumor cells. OBJECTIVE: This study aimed to examine the cytotoxic potential of the methanolic fraction of Lophira alata root on malignant glioma invasive cellular growth and survival. METHODS: The methanolic fraction of Lophira alata (LAM) was subjected to high-performance liquid chromatography to determine the fingerprints of the active molecules. The antiproliferative effects of Lophira alata were assessed using the MTT and LDH assays. Protein immunoblots were carried out to test the effects of Lophira alata, alone or in the presence of phorbol ester, on survival signaling pathways, such as Akt, mTOR, and apoptotic markers such as PARP and caspases. RESULTS: The methanolic fraction of Lophira alata (LAM) induced a concentration-dependent and time-dependent decrease in glioma cell proliferation. In addition, LAM attenuated phorbol ester-mediated signaling of downstream targets such as Akt/mTOR. Gene silencing using siRNA targeting PKC-alpha attenuated LAM-mediated downregulation of Akt. In addition, LAM induced both PARP and caspase cleavages. The HPLC fingerprint of the fraction indicates the presence of flavonoids. CONCLUSION: LAM decreases cell proliferation and induces apoptosis in glioma cell lines and thus could serve as a therapeutic molecule in the management of gliomas.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Glioblastoma/tratamento farmacológico , Ochnaceae/química , Extratos Vegetais/farmacologia , Proteína Quinase C-alfa/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Ésteres de Forbol/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Proteína Quinase C-alfa/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Tumorais Cultivadas
4.
Basic Clin Pharmacol Toxicol ; 123(6): 678-686, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29935053

RESUMO

Glioblastomas are a subtype of gliomas, which are the most aggressive and deadly form of brain tumours. The epidermal growth factor receptor (EGFR) is over-expressed and amplified in glioblastomas. Luteolin is a common bioflavonoid found in a variety of fruits and vegetables. The aim of this study was to explore the molecular and biological effects of luteolin on EGF-induced cell proliferation and the potential of luteolin to induce apoptosis in glioblastoma cells. In vitro cell viability assays demonstrated that luteolin decreased cell proliferation in the presence or absence of EGF. Immunoblots revealed that luteolin decreased the protein expression levels of phosphorylated Akt, mTOR, p70S6K and MAPK in the presence of EGF. Furthermore, our results revealed the ability of luteolin to induce caspase and PARP cleavages in glioblastoma cells in addition to promoting cell cycle arrest. Our results demonstrated that luteolin has an inhibitory effect on downstream signalling molecules activated by EGFR, particularly the Akt and MAPK signalling pathways, and provided a rationale for further clinical investigation into the use of luteolin as a therapeutic molecule in the management of glioblastoma.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Luteolina/farmacologia , Western Blotting , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Citometria de Fluxo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...