Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Med ; 29(12): 3137-3148, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973946

RESUMO

The human body generates various forms of subtle, broadband acousto-mechanical signals that contain information on cardiorespiratory and gastrointestinal health with potential application for continuous physiological monitoring. Existing device options, ranging from digital stethoscopes to inertial measurement units, offer useful capabilities but have disadvantages such as restricted measurement locations that prevent continuous, longitudinal tracking and that constrain their use to controlled environments. Here we present a wireless, broadband acousto-mechanical sensing network that circumvents these limitations and provides information on processes including slow movements within the body, digestive activity, respiratory sounds and cardiac cycles, all with clinical grade accuracy and independent of artifacts from ambient sounds. This system can also perform spatiotemporal mapping of the dynamics of gastrointestinal processes and airflow into and out of the lungs. To demonstrate the capabilities of this system we used it to monitor constrained respiratory airflow and intestinal motility in neonates in the neonatal intensive care unit (n = 15), and to assess regional lung function in patients undergoing thoracic surgery (n = 55). This broadband acousto-mechanical sensing system holds the potential to help mitigate cardiorespiratory instability and manage disease progression in patients through continuous monitoring of physiological signals, in both the clinical and nonclinical setting.


Assuntos
Unidades de Terapia Intensiva Neonatal , Recém-Nascido , Humanos , Monitorização Fisiológica
3.
PeerJ ; 11: e15578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397010

RESUMO

Background: Continuous monitoring of vital signs and other biological signals in the Neonatal Intensive Care Unit (NICU) requires sensors connected to the bedside monitors by wires and cables. This monitoring system presents challenges such as risks for skin damage or infection, possibility of tangling around the patient body, or damage of the wires, which may complicate routine care. Furthermore, the presence of cables and wires can act as a barrier for parent-infant interactions and skin to skin contact. This study will investigate the use of a new wireless sensor for routine vital monitoring in the NICU. Methods: Forty-eight neonates will be recruited from the Montreal Children's Hospital NICU. The primary outcome is to evaluate the feasibility, safety, and accuracy of a wireless monitoring technology called ANNE® One (Sibel Health, Niles, MI, USA). The study will be conducted in 2 phases where physiological signals will be acquired from the standard monitoring system and the new wireless monitoring system simultaneously. In phase 1, participants will be monitored for 8 h, on four consecutive days, and the following signals will be obtained: heart rate, respiratory rate, oxygen saturation and skin temperature. In phase 2, the same signals will be recorded, but for a period of 96 consecutive hours. Safety and feasibility of the wireless devices will be assessed. Analyses of device accuracy and performance will be accomplished offline by the biomedical engineering team. Conclusion: This study will evaluate feasibility, safety, and accuracy of a new wireless monitoring technology in neonates treated in the NICU.


Assuntos
Unidades de Terapia Intensiva Neonatal , Sinais Vitais , Recém-Nascido , Criança , Humanos , Monitorização Fisiológica , Taxa Respiratória , Frequência Cardíaca
4.
Eur J Pediatr ; 182(5): 1991-2003, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36859727

RESUMO

The purpose of this study is to provide a structured overview of existing wireless monitoring technologies for hospitalized children. A systematic search of the literature published after 2010 was conducted in Medline, Embase, Scielo, Cochrane, and Web of Science. Two investigators independently reviewed articles to determine eligibility for inclusion. Information on study type, hospital setting, number of participants, use of a reference sensor, type and number of vital signs monitored, duration of monitoring, type of wireless information transfer, and outcomes of the wireless devices was extracted. A descriptive analysis was applied. Of the 1130 studies identified from our search, 42 met eligibility for subsequent analysis. Most included studies were observational studies with sample sizes of 50 or less published between 2019 and 2022. Common problems pertaining to study methodology and outcomes observed were short duration of monitoring, single focus on validity, and lack information on wireless transfer and data management.  Conclusion: Research on the use of wireless monitoring for children in hospitals has been increasing in recent years but often limited by methodological problems. More rigorous studies are necessary to establish the safety and accuracy of novel wireless monitoring devices in hospitalized children. What is Known: • Continuous monitoring of vital signs using wired sensors is the standard of care for hospitalized pediatric patients. However, the use of wires may pose significant challenges to optimal care. What is New: • Interest in wireless monitoring for hospitalized pediatric patients has been rapidly growing in recent years. • However, most devices are in early stages of clinical testing and are limited by inconsistent clinical and technological reporting.


Assuntos
Criança Hospitalizada , Sinais Vitais , Humanos , Criança , Hospitais , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...