Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(25): 9184-9193, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37310090

RESUMO

Life cycle assessment (LCA) aims at providing standardized evaluations of processes involving resource use, human health, and environmental consequences. Currently, spatial dependencies are most often neglected, though they are essential for impact categories like biodiversity. The "Swiss Agricultural Life Cycle Assessment for Biodiversity (SALCA-BD)" evaluates the impact of agricultural field management on 11 indicator species groups. We tested if its performance can be improved by accounting for the spatial context of the individual fields. We used high-resolution bird/butterfly point observations in two agricultural regions in Switzerland and built linear mixed models to compare SALCA-BD scores to the observed species richness at the field/landscape scale. We calculated a set of landscape metrics, tested their relationship with the landscape-model prediction errors, and then added all significant metrics as additional predictors to the landscape models. Our results show that field-scale SALCA-BD scores were significantly related to the observed field-scale richness for both indicator groups. However, the performance decreased when aggregated to the landscape scale, with high variability between regions. Adding specific landscape metrics improved the landscape model for birds but not for butterflies. Integrating the spatial context to LCA biodiversity assessments could provide moderate benefits, while its usefulness depends on the conditions of the respective assessment.


Assuntos
Borboletas , Animais , Humanos , Fazendas , Biodiversidade , Agricultura/métodos , Aves , Estágios do Ciclo de Vida , Ecossistema
2.
Ecol Lett ; 23(10): 1488-1498, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32808477

RESUMO

Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.


Assuntos
Ecossistema , Polinização , Agricultura , Abelhas , Biodiversidade , Europa (Continente) , Flores , Nova Zelândia , América do Norte , Controle de Pragas
4.
Insects ; 11(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244905

RESUMO

Invertebrates perform many vital functions in agricultural production, but many taxa are in decline, including pest natural enemies. Action is needed to increase their abundance if more sustainable agricultural systems are to be achieved. Conservation biological control (CBC) is a key component of integrated pest management yet has failed to be widely adopted in mainstream agriculture. Approaches to improving conservation biological control have been largely ad hoc. Two approaches are described to improve this process, one based upon pest natural enemy ecology and resource provision while the other focusses on the ecosystem service delivery using the QuESSA (Quantification of Ecological Services for Sustainable Agriculture) project as an example. In this project, a predictive scoring system was developed to show the potential of five seminatural habitat categories to provide biological control, from which predictive maps were generated for Europe. Actual biological control was measured in a series of case studies using sentinel systems (insect or seed prey), trade-offs between ecosystem services were explored, and heatmaps of biological control were generated. The overall conclusion from the QuESSA project was that results were context specific, indicating that more targeted approaches to CBC are needed. This may include designing new habitats or modifying existing habitats to support the types of natural enemies required for specific crops or pests.

5.
J Environ Manage ; 251: 109372, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550606

RESUMO

Grasslands provide multiple Ecosystem Services (ES) such as forage provision, carbon sequestration or habitat provision. Knowledge about the trade-offs between these ES is of great importance for grassland management. Yet, the outcome of different management strategies on ES provision is highly uncertain due to spatial variability. We aim to characterize the provision (level and spatial variability) of grassland ES under various management strategies. To do so, we combine empirical data for multiple ES with spatially explicit census data on land use intensities. We analyzed the variations of five ES (forage provision, climate regulation, pollination, biodiversity conservation and outdoor recreation) using data from biodiversity fieldwork, experimental plots for carbon as well as social network data from Flickr. These data were used to calculate the distribution of modelled individual and multiple ES values from different grassland management types in a Swiss case study region using spatial explicit information for 17,383 grassland parcels. Our results show that (1) management regime and intensity levels play an important role in ES provision but their impact depends on the ES. In general, extensive management, especially in pastures, favors all ES but forage provision, whereas intensive management favors only forage provision and outdoor recreation; (2) ES potential provision varies between parcels under the same management due to the influence of environmental drivers, related to topography and landscape structure; (3) there is a trade-offs between forage provision and other ES at the cantonal level but a synergy between forage provision and biodiversity conservation within the grassland categories, due to the negative impact of elevation on both ES. Information about multiple ES provision is key to support effective agri-environmental measures and information about the spatial variability can prevent uncertain outputs of decision-making processes.


Assuntos
Ecossistema , Pradaria , Agricultura , Biodiversidade , Conservação dos Recursos Naturais
6.
Ecol Lett ; 22(7): 1083-1094, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30957401

RESUMO

Managing agricultural landscapes to support biodiversity and ecosystem services is a key aim of a sustainable agriculture. However, how the spatial arrangement of crop fields and other habitats in landscapes impacts arthropods and their functions is poorly known. Synthesising data from 49 studies (1515 landscapes) across Europe, we examined effects of landscape composition (% habitats) and configuration (edge density) on arthropods in fields and their margins, pest control, pollination and yields. Configuration effects interacted with the proportions of crop and non-crop habitats, and species' dietary, dispersal and overwintering traits led to contrasting responses to landscape variables. Overall, however, in landscapes with high edge density, 70% of pollinator and 44% of natural enemy species reached highest abundances and pollination and pest control improved 1.7- and 1.4-fold respectively. Arable-dominated landscapes with high edge densities achieved high yields. This suggests that enhancing edge density in European agroecosystems can promote functional biodiversity and yield-enhancing ecosystem services.


Assuntos
Biodiversidade , Produtos Agrícolas , Ecossistema , Agricultura , Animais , Europa (Continente) , Polinização
7.
Sci Total Environ ; 580: 358-366, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27979626

RESUMO

Life Cycle Assessment (LCA) is a widely used tool to assess environmental sustainability of products. The LCA should optimally cover the most important environmental impact categories such as climate change, eutrophication and biodiversity. However, impacts on biodiversity are seldom included in LCAs due to methodological limitations and lack of appropriate characterization factors. When assessing organic agricultural products the omission of biodiversity in LCA is problematic, because organic systems are characterized by higher species richness at field level compared to the conventional systems. Thus, there is a need for characterization factors to estimate land use impacts on biodiversity in life cycle assessment that are able to distinguish between organic and conventional agricultural land use that can be used to supplement and validate the few currently suggested characterization factors. Based on a unique dataset derived from field recording of plant species diversity in farmland across six European countries, the present study provides new midpoint occupation Characterization Factors (CF) expressing the Potentially Disappeared Fraction (PDF) to estimate land use impacts on biodiversity in the 'Temperate Broadleaf and Mixed Forest' biome in Europe. The method is based on calculation of plant species on randomly selected test sites in the biome and enables the calculation of characterization factors that are sensitive to particular types of management. While species richness differs between countries, the calculated CFs are able to distinguish between different land use types (pastures (monocotyledons or mixed), arable land and hedges) and management practices (organic or conventional production systems) across countries. The new occupation CFs can be used to supplement or validate the few current CF's and can be applied in LCAs of agricultural products to assess land use impacts on species richness in the 'Temperate Broadleaf and Mixed Forest' biome.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Fazendas , Florestas , Agricultura , Mudança Climática , Europa (Continente)
8.
Ecology ; 97(6): 1625, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27859220

RESUMO

Farmland is a major land cover type in Europe and Africa and provides habitat for numerous species. The severe decline in farmland biodiversity of the last decades has been attributed to changes in farming practices, and organic and low-input farming are assumed to mitigate detrimental effects of agricultural intensification on biodiversity. Since the farm enterprise is the primary unit of agricultural decision making, management-related effects at the field scale need to be assessed at the farm level. Therefore, in this study, data were collected on habitat characteristics, vascular plant, earthworm, spider, and bee communities and on the corresponding agricultural management in 237 farms in 13 European and two African regions. In 15 environmental and agricultural homogeneous regions, 6-20 farms with the same farm type (e.g., arable crops, grassland, or specific permanent crops) were selected. If available, an equal number of organic and non-organic farms were randomly selected. Alternatively, farms were sampled along a gradient of management intensity. For all selected farms, the entire farmed area was mapped, which resulted in total in the mapping of 11 338 units attributed to 194 standardized habitat types, provided together with additional descriptors. On each farm, one site per available habitat type was randomly selected for species diversity investigations. Species were sampled on 2115 sites and identified to the species level by expert taxonomists. Species lists and abundance estimates are provided for each site and sampling date (one date for plants and earthworms, three dates for spiders and bees). In addition, farmers provided information about their management practices in face-to-face interviews following a standardized questionnaire. Farm management indicators for each farm are available (e.g., nitrogen input, pesticide applications, or energy input). Analyses revealed a positive effect of unproductive areas and a negative effect of intensive management on biodiversity. Communities of the four taxonomic groups strongly differed in their response to habitat characteristics, agricultural management, and regional circumstances. The data has potential for further insights into interactions of farmland biodiversity and agricultural management at site, farm, and regional scale.


Assuntos
Agricultura/métodos , Biodiversidade , Fazendas , África , Animais , Abelhas , Produtos Agrícolas , Ecossistema , Monitoramento Ambiental , Europa (Continente)
9.
Pest Manag Sci ; 72(9): 1638-51, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27178745

RESUMO

Different semi-natural habitats occur on farmland, and it is the vegetation's traits and structure that subsequently determine their ability to support natural enemies and their associated contribution to conservation biocontrol. New habitats can be created and existing ones improved with agri-environment scheme funding in all EU member states. Understanding the contribution of each habitat type can aid the development of conservation control strategies. Here we review the extent to which the predominant habitat types in Europe support natural enemies, whether this results in enhanced natural enemy densities in the adjacent crop and whether this leads to reduced pest densities. Considerable variation exists in the available information for the different habitat types and trophic levels. Natural enemies within each habitat were the most studied, with less information on whether they were enhanced in adjacent fields, while their impact on pests was rarely investigated. Most information was available for woody and herbaceous linear habitats, yet not for woodland which can be the most common semi-natural habitat in many regions. While the management and design of habitats offer potential to stimulate conservation biocontrol, we also identified knowledge gaps. A better understanding of the relationship between resource availability and arthropod communities across habitat types, the spatiotemporal distribution of resources in the landscape and interactions with other factors that play a role in pest regulation could contribute to an informed management of semi-natural habitats for biocontrol. © 2016 Society of Chemical Industry.


Assuntos
Artrópodes , Conservação dos Recursos Naturais , Ecossistema , Controle Biológico de Vetores , Plantas Daninhas , Animais , Europa (Continente)
10.
Nat Commun ; 5: 4151, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24958283

RESUMO

Organic farming is promoted to reduce environmental impacts of agriculture, but surprisingly little is known about its effects at the farm level, the primary unit of decision making. Here we report the effects of organic farming on species diversity at the field, farm and regional levels by sampling plants, earthworms, spiders and bees in 1470 fields of 205 randomly selected organic and nonorganic farms in twelve European and African regions. Species richness is, on average, 10.5% higher in organic than nonorganic production fields, with highest gains in intensive arable fields (around +45%). Gains to species richness are partly caused by higher organism abundance and are common in plants and bees but intermittent in earthworms and spiders. Average gains are marginal +4.6% at the farm and +3.1% at the regional level, even in intensive arable regions. Additional, targeted measures are therefore needed to fulfil the commitment of organic farming to benefit farmland biodiversity.


Assuntos
Abelhas/crescimento & desenvolvimento , Biodiversidade , Oligoquetos/crescimento & desenvolvimento , Agricultura Orgânica , Animais , Abelhas/classificação , Meio Ambiente , Oligoquetos/classificação , Plantas/classificação , Aranhas/classificação , Aranhas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...