Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Ecol ; 32(23): 6507-6522, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36541038

RESUMO

Coccolithophores have global ecological and biogeochemical significance as the most important calcifying marine phytoplankton group. The structure and selection of prokaryotic communities associated with the most abundant coccolithophore and bloom-forming species, Emiliania huxleyi, are still poorly known. In this study, we assessed the diversity of bacterial communities associated with an E. huxleyi bloom in the Celtic Sea (Eastern North Atlantic), exposed axenic E. huxleyi cultures to prokaryotic communities derived from bloom and non-bloom conditions, and followed the dynamics of their microbiome composition over one year. Bloom-associated prokaryotic communities were dominated by SAR11, Marine group II Euryarchaeota and Rhodobacterales and contained substantial proportions of known indicators of phytoplankton bloom demises such as Flavobacteriaceae and Pseudoalteromonadaceae. The taxonomic richness of bacteria derived from natural communities associated with axenic E. huxleyi rapidly shifted and then stabilized over time. The succession of microorganisms recruited from the environment was consistently dependent on the composition of the initial bacterioplankton community. Phycosphere-associated communities derived from the E. huxleyi bloom were highly similar to one another, suggesting deterministic processes, whereas cultures from non-bloom conditions show an effect of stochasticity. Overall, this work sheds new light on the importance of the initial inoculum composition in microbiome recruitment and elucidates the temporal dynamics of its composition and long-term stability.


Assuntos
Haptófitas , Microbiota , Haptófitas/genética , Fitoplâncton/genética , Organismos Aquáticos , Bactérias , Microbiota/genética
3.
Sci Rep ; 10(1): 2531, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054950

RESUMO

As critical primary producers and recyclers of organic matter, the diversity of marine protists has been extensively explored by high-throughput barcode sequencing. However, classification of short metabarcoding sequences into traditional taxonomic units is not trivial, especially for lineages mainly known by their genetic fingerprints. This is the case for the widespread Amoebophrya ceratii species complex, parasites of their dinoflagellate congeners. We used genetic and phenotypic characters, applied to 119 Amoebophrya individuals sampled from the same geographic area, to construct practical guidelines for species delineation that could be applied in DNA/RNA based diversity analyses. Based on the internal transcribed spacer (ITS) regions, ITS2 compensatory base changes (CBC) and genome k-mer comparisons, we unambiguously defined eight cryptic species among closely related ribotypes that differed by less than 97% sequence identity in their SSU rDNA. We then followed the genetic signatures of these parasitic species during a three-year survey of Alexandrium minutum blooms. We showed that these cryptic Amoebophrya species co-occurred and shared the same ecological niche. We also observed a maximal ecological fitness for parasites having narrow to intermediate host ranges, reflecting a high cost for infecting a broader host range. This study suggests that a complete taxonomic revision of these parasitic dinoflagellates is long overdue to understand their diversity and ecological role in the marine plankton.


Assuntos
Dinoflagellida/genética , DNA Ribossômico/genética , Dinoflagellida/classificação , Óperon , Fenótipo , Infecções por Protozoários/parasitologia , Ribossomos/genética , Ribotipagem , Sequenciamento Completo do Genoma
4.
Artigo em Inglês | MEDLINE | ID: mdl-30834382

RESUMO

Silicimonas algicola strain KC90BT is an alphaproteobacterium of the Roseobacter clade that was isolated from a culture of the marine diatom Thalassiosira delicatula. Here, we report the complete genome sequence of this type strain, which is 4,351,658 bp in size with 4,272 coding sequences and an average G+C content of 65.2%.

5.
ISME J ; 13(4): 1110-1113, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30523275

RESUMO

We report for the first time the in situ dynamics of a vampyrellid in a marine system. A high sampling frequency (twice-weekly) was applied in a tropical eutrophic lagoon (Rio de Janeiro, Brazil) for 5 years (2012-2016). The vampyrellid Hyalodiscus sp. specifically fed on the diatom Chaetoceros minimus during a short time window (~3 months), although the prey was intermittently detected as the dominant phytoplanktonic species over a longer period (~1 year). A classic Lotka-Volterra predator-prey dynamic was observed between the two partners, with a significant modification of the short-term oscillations of the prey. Specific abiotic preferences (i.e., relatively low temperature, intermediate salinity, and stratified conditions) associated with prey availability seemed to define this narrow temporal window of occurrence. Our results suggest that vampyrellids can be ecologically relevant in marine pelagic systems, with their impact on planktonic dynamics strongly depending on complex interactions between both biotic and abiotic factors.


Assuntos
Cercozoários/fisiologia , Diatomáceas , Fitoplâncton , Brasil , Ecossistema , Água do Mar
6.
Front Microbiol ; 9: 2879, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564203

RESUMO

Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. The cosmopolitan diatoms Thalassiosira and Chaetoceros often dominate phytoplankton communities in marine systems. Past studies of diatom-bacterial associations have employed community-level methods and culture-based or natural diatom populations. Although bacterial assemblages attached to individual diatoms represents tight associations little is known on their makeup or interactions. Here, we examined the epibiotic bacteria of 436 Thalassiosira and 329 Chaetoceros single cells isolated from natural samples and collection cultures, regarded here as short- and long-term associations, respectively. Epibiotic microbiota of single diatom hosts was analyzed by cultivation and by cloning-sequencing of 16S rRNA genes obtained from whole-genome amplification products. The prevalence of epibiotic bacteria was higher in cultures and dependent of the host species. Culture approaches demonstrated that both diatoms carry distinct bacterial communities in short- and long-term associations. Bacterial epibonts, commonly associated with phytoplankton, were repeatedly isolated from cells of diatom collection cultures but were not recovered from environmental cells. Our results suggest that in controlled laboratory culture conditions bacterial-diatom and bacterial-bacterial interactions select for a simplified, but specific, epibiotic microbiota shaped and adapted for long-term associations.

7.
Sci Rep ; 8(1): 4105, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515205

RESUMO

In marine environments, aerobic anoxygenic phototrophic (AAP) bacterial assemblages vary in space and along environmental gradients but the factors shaping their diversity and distribution at different taxonomic levels remain poorly identified. Using sets of sequences encoding the M sub-unit of the photosynthetic apparatus from different oceanic regions, we prioritized the processes underlying AAP bacterial biogeographical patterns. The present analysis offers novel insights into the ecological distribution of marine AAP bacteria and highlights that physiological constraints play a key role in structuring AAP bacterial assemblages at a global scale. Salinity especially seems to favor lineage-specific adaptations. Moreover, by inferring the evolutionary history of habitat transitions, a substantial congruence between habitat and evolutionary relatedness was highlighted. The identification of ecological cohesive clades for AAP bacteria suggests that prediction of AAP bacterial assemblages is possible from marine habitat properties.


Assuntos
Bactérias Aeróbias/fisiologia , Ecossistema , Modelos Biológicos , Fotossíntese/fisiologia , Filogenia , Água do Mar/microbiologia , Oceanos e Mares , Filogeografia
8.
Front Microbiol ; 8: 1995, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29114241

RESUMO

Mass blooms of purple sulfur bacteria growing seasonally on green stranded macroalgae have a major impact on the microbial composition and functionality of intertidal mats. To explore the active anoxygenic phototrophic community in purple bacterial mats from the Roscoff Aber Bay (Brittany, France), we conducted a combined approach including molecular and high-resolution secondary ion mass spectrometry (NanoSIMS) analyses. To investigate the dynamics of carbon and nitrogen assimilation activities, NanoSIMS was coupled with a stable isotope probing (SIP) experiment and a compound specific isotope analysis (CSIA) of fatty acid methyl ester (FAME). Sediment samples were incubated with 13C- and/or 15N-labeled acetate, pyruvate, bicarbonate and ammonium. NanoSIMS analysis of 13C - and 15N -incubated samples showed elevated incorporations of 13C - and 15N in the light and of 13C -acetate in the dark into dense populations of spherical cells that unambiguously dominated the mats. These results confirmed CSIA data that ranked vaccenic acid, an unambiguous marker of purple sulfur bacteria, as the most strongly enriched in the light after 13C -acetate amendment and indicated that acetate uptake, the most active in the mat, was not light-dependent. Analysis of DNA- and cDNA-derived pufM gene sequences revealed that Thiohalocapsa-related clones dominated both libraries and were the most photosynthetically active members of the mat samples. This study provides novel insights into the contribution of purple sulfur bacteria to the carbon cycle during their seasonal developments at the sediment surface in the intertidal zone.

9.
Front Microbiol ; 8: 2456, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312170

RESUMO

Coastal areas form the major habitat of brown macroalgae, photosynthetic multicellular eukaryotes that have great ecological value and industrial potential. Macroalgal growth, development, and physiology are influenced by the microbial community they accommodate. Studying the algal microbiome should thus increase our fundamental understanding of algal biology and may help to improve culturing efforts. Currently, a freshwater strain of the brown macroalga Ectocarpus subulatus is being developed as a model organism for brown macroalgal physiology and algal microbiome studies. It can grow in high and low salinities depending on which microbes it hosts. However, the molecular mechanisms involved in this process are still unclear. Cultivation of Ectocarpus-associated bacteria is the first step toward the development of a model system for in vitro functional studies of brown macroalgal-bacterial interactions during abiotic stress. The main aim of the present study is thus to provide an extensive collection of cultivable E. subulatus-associated bacteria. To meet the variety of metabolic demands of Ectocarpus-associated bacteria, several isolation techniques were applied, i.e., direct plating and dilution-to-extinction cultivation techniques, each with chemically defined and undefined bacterial growth media. Algal tissue and algal growth media were directly used as inoculum, or they were pretreated with antibiotics, by filtration, or by digestion of algal cell walls. In total, 388 isolates were identified falling into 33 genera (46 distinct strains), of which Halomonas (Gammaproteobacteria), Bosea (Alphaproteobacteria), and Limnobacter (Betaproteobacteria) were the most abundant. Comparisons with 16S rRNA gene metabarcoding data showed that culturability in this study was remarkably high (∼50%), although several cultivable strains were not detected or only present in extremely low abundance in the libraries. These undetected bacteria could be considered as part of the rare biosphere and they may form the basis for the temporal changes in the Ectocarpus microbiome.

10.
Proc Biol Sci ; 283(1841)2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27798309

RESUMO

Parasites play a role in the control of transient algal blooms, but it is not known whether parasite-mediated selection results in coevolution of the host and the parasites over this short time span. We investigated the presence of coevolution between the toxic dinoflagellate Alexandrium minutum and two naturally occurring endoparasites during blooms lasting a month in two river estuaries, using cross-inoculation experiments across time and space. Higher parasite abundance was associated with a large daily reduction in relative A. minutum abundances, demonstrating strong parasite-mediated selection. There was genetic variability in infectivity in both parasite species, and in resistance in the host. We found no evidence for coevolution in one estuary; however, in the other estuary, we found high genetic diversity in the two parasite species, fluctuations in infectivity and suggestion that the two parasites are well adapted to their host, as in 'Red Queen' dynamics. Thus, coevolution is possible over the short time span of a bloom, but geographically variable, and may feedback on community dynamics.


Assuntos
Coevolução Biológica , Dinoflagellida/genética , Eutrofização , Parasitos/genética , Animais , Estuários , Variação Genética , Interações Hospedeiro-Parasita , Parasitos/classificação , Dinâmica Populacional , Seleção Genética
11.
Front Microbiol ; 7: 1584, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27790192

RESUMO

Proteorhodopsins (PR) are phylogenetically diverse and highly expressed proton pumps in marine bacterial communities. The phylogenetic diversity and in situ expression of the main PR groups in polar off-shore, coastal and estuarine waters is poorly known and their abundance has not yet been reported. Here, we show that PR gene sequences of the southern Beaufort Sea including MacKenzie shelf and estuary are mainly affiliated to Gammaproteobacteria, Alphaproteobacteria, and Bacteroidetes. Substantial overlap (78%) between DNA- and cDNA-based librairies indicated in situ PR transcription within a large fraction of PR-containing community. Sets of specific qPCR primers were designed to measure the absolute abundances of the major PR types. Spatial and depth profiles showed that PR-containing bacteria were abundant throughout the photic zone, comprising up to 45% of total bacteria. Although their abundance varied greatly with location and depth, Alphaproteobacteria predominated in the PR community in all water masses, with SAR11 as the major PR type. Low nutrient concentrations rather than light were the environmental drivers that best explained the abundance and distribution of arctic PR types. Together, our data suggests that PR-based phototrophy could be the major phototrophic prokaryotic process during the Arctic Ocean summer.

12.
Appl Environ Microbiol ; 82(24): 7205-7216, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27736788

RESUMO

Aerobic anoxygenic phototrophic bacteria (AAPB) are thought to be important players in oceanic carbon and energy cycling in the euphotic zone of the ocean. The genus Citromicrobium, widely found in oligotrophic oceans, is a member of marine alphaproteobacterial AAPB. Nine Citromicrobium strains isolated from the South China Sea, the Mediterranean Sea, or the tropical South Atlantic Ocean were found to harbor identical 16S rRNA sequences. The sequencing of their genomes revealed high synteny in major regions. Nine genetic islands (GIs) involved mainly in type IV secretion systems, flagellar biosynthesis, prophage, and integrative conjugative elements, were identified by a fine-scale comparative genomics analysis. These GIs played significant roles in genomic evolution and divergence. Interestingly, the coexistence of two different photosynthetic gene clusters (PGCs) was not only found in the analyzed genomes but also confirmed, for the first time, to our knowledge, in environmental samples. The prevalence of the coexistence of two different PGCs may suggest an adaptation mechanism for Citromicrobium members to survive in the oceans. Comparison of genomic characteristics (e.g., GIs, average nucleotide identity [ANI], single-nucleotide polymorphisms [SNPs], and phylogeny) revealed that strains within a marine region shared a similar evolutionary history that was distinct from that of strains isolated from other regions (South China Sea versus Mediterranean Sea). Geographic differences are partly responsible for driving the observed genomic divergences and allow microbes to evolve through local adaptation. Three Citromicrobium strains isolated from the Mediterranean Sea diverged millions of years ago from other strains and evolved into a novel group. IMPORTANCE: Aerobic anoxygenic phototrophic bacteria are a widespread functional group in the upper ocean, and their abundance could be up to 15% of the total heterotrophic bacteria. To date, a great number of studies display AAPB biogeographic distribution patterns in the ocean; however, little is understood about the geographic isolation impact on the genome divergence of marine AAPB. In this study, we compare nine Citromicrobium genomes of strains that have identical 16S rRNA sequences but different ocean origins. Our results reveal that strains isolated from the same marine region share a similar evolutionary history that is distinct from that of strains isolated from other regions. These Citromicrobium strains diverged millions of years ago. In addition, the coexistence of two different PGCs is prevalent in the analyzed genomes and in environmental samples.


Assuntos
Genoma Bacteriano , Água do Mar/microbiologia , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação , Oceano Atlântico , Evolução Molecular , Variação Genética , Genômica , Geografia , Mar Mediterrâneo , Filogenia , Sphingomonadaceae/classificação
13.
Int J Syst Evol Microbiol ; 66(11): 4580-4588, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27498967

RESUMO

A Gram-negative, aerobic, non-motile bacterium, designated strain KC90BT, was isolated from the surface of a cell of the marine diatom Thalassiosira delicatula. The bacterial cells were pleomorphic and formed very small, beige colonies on marine agar. Optimal growth was obtained at 25 °C, at pH 6.5-7.5 and in the presence of 1.5-2.0 % (w/v) NaCl. Phylogenetic analyses based on its 16S rRNA gene sequence revealed that strain KC90BT belonged to the Roseobacter clade and formed a monophyletic cluster with the sequences of Boseongicola aestuarii, Profundibacterium mesophilum, Hwanghaeicola aestuarii, Maribius pelagius and M. salinus, showing 91.4-95.7 % sequence similarities. Ubiquinone Q-10 was the predominant lipoquinone but a significant amount of ubiquinone Q-9 was also detected. The major cellular fatty acids were C18 : 1ω7c, 11-methyl C18 : 1ω7c and C18 : 0. Strain KC90BT also contained specific fatty acids (C17 : 0, anteiso-C15 : 0 and anteiso-C17 : 0) that were not detected in its closest described relatives. The major polar lipids of strain KC90BT comprised phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol and an unidentified aminolipid. The DNA G+C content of strain KC90BT was 65.2 mol%. The phylogenetic analysis of strain KC90BT, together with the differential phenotypic and chemotaxonomic properties demonstrate that strain KC90BT is distinct from type strains of B. aestuarii, P. mesophilum, H. aestuarii, M. pelagius and M. salinus. Based on the data presented in this study, strain KC90BT represents a novel genus and species within the family Rhodobacteraceae, for which the name Silicimonas algicola gen. nov., sp. nov. is proposed. The type strain is KC90BT (=DSM 103371T=RCC 4681T).


Assuntos
Diatomáceas/microbiologia , Filogenia , Rhodobacteraceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Água do Mar/microbiologia , Análise de Sequência de DNA , Ubiquinona/química
14.
Environ Microbiol Rep ; 8(5): 689-698, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27264016

RESUMO

The contribution of bacteriochlorophyll a (BChl a) to photosynthetically driven electron transport is generally low in aquatic and terrestrial systems. Here, we provide evidence that anoxygenic bacterial phototrophy is widespread and substantial in water retained by tank bromeliads of a primary rainforest in French Guiana. An analysis of the water extracted from 104 randomly selected tank bromeliads using infrared fluorimetry suggested the overall presence of abundant anoxygenic phototrophic bacterial populations. We found that purple bacteria dominated these populations responsible for unusually high BChl a/chlorophyll a ratios (>50%). Our data suggest that BChl a-based phototrophy in tank bromeliads can have significant effects on the ecology of tank-bromeliad ecosystems and on the carbon and energy fluxes in Neotropical forests.

15.
J Phycol ; 52(3): 475-85, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26992328

RESUMO

The aim of this paper was to study the effects of temperature and irradiance on the photodegradation state of killed phytoplankton cells. For this purpose, killed cells of the diatom Chaetoceros neogracilis RCC2022 were irradiated (photosynthetically active radiation) at 36 and 446 J · s(-1)  · m(-2) (for the same cumulative dose of irradiation energy) and at two temperatures (7°C and 17°C). Analyses of specific lipid tracers (fatty acids and sterols) revealed that low temperatures and irradiances increased photooxidative damages of monounsaturated lipids (i.e., palmitoleic acid, cholesterol and campesterol). The high efficiency of type II photosensitized degradation processes was attributed to: (i) the relative preservation of the sensitizer (chlorophyll) at low irradiances allowing a longer production of singlet oxygen and (ii) the slow diffusion rate of singlet oxygen through membranes at low temperatures inducing more damages. Conversely, high temperatures and irradiances induced (i) a rapid degradation of the photosensitizer and a loss of singlet oxygen by diffusion outside the membranes (limiting type II photosensitized oxidation), and (ii) intense autoxidation processes degrading unsaturated cell lipids and oxidation products used as photodegradation tracers. Our results may explain the paradoxical relationship observed in situ between latitude and photodegradation state of phytoplankton cells.


Assuntos
Diatomáceas/fisiologia , Fitoplâncton/fisiologia , Luz Solar , Temperatura , Fotólise
16.
Artigo em Inglês | MEDLINE | ID: mdl-26286928

RESUMO

Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr.


Assuntos
Bacteriorodopsinas/genética , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Filogenia , RNA Ribossômico 16S , Alinhamento de Sequência
17.
Front Microbiol ; 6: 638, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26191046

RESUMO

Despite an increasing number of studies over the last 15 years, aerobic anoxygenic photoheterotrophic (AAP) bacteria remain a puzzling functional group in terms of physiology, metabolism, and ecology. To contribute to a better knowledge of their environmental distribution, the present study aims at analyzing their diversity and structure at the boundary between the Norwegian, Greenland, and Barents Seas. The polymorphism of a marker gene encoding a sub-unit of the photosynthetic apparatus (pufM gene) was analyzed and attempted to be related to environmental parameters. The Atlantic or Arctic origin of water masses had a strong impact on the AAP bacterial community structure whose populations mostly belonged to the Alpha- and Gammaproteobacteria. A majority (>60%) of pufM sequences were affiliated to the Gammaproteobacteria reasserting that this class often represents the major component of the AAP bacterial community in oceanic regions. Two alphaproteobacterial groups dominate locally suggesting that they can constitute key players in this marine system transiently. We found that temperature is a major determinant of alpha diversity of AAP bacteria in this marine biome with specific clades emerging locally according to the partitioning of water masses. Whereas we expected specific AAP bacterial populations in this peculiar and newly explored ecosystem, most pufM sequences were highly related to sequences retrieved elsewhere. This observation highlights that the studied area does not favor AAP bacteria endemism but also opens new questions about the truthfulness of biogeographical patterns and on the extent of AAP bacterial diversity.

18.
Gigascience ; 4: 27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26097697

RESUMO

Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world's oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.


Assuntos
Biologia Marinha , Biodiversidade , Sistemas de Gerenciamento de Base de Dados , Metagenômica , Oceanos e Mares
19.
Protist ; 165(2): 230-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24709472

RESUMO

Environmental 18S rRNA gene surveys of microbial eukaryotes have recently revealed the diversity of major parasitic agents in pelagic freshwater systems, consisting primarily of chytrid fungi. To date, only a few studies have reported the presence of chydrids in the marine environment and a limited number of marine chytrids have been properly identified and characterized. Here, we report the isolation and cultivation of a marine chytrid from samples taken during a bloom of the toxic dinoflagellate Alexandrium minutum in the Arenys de Mar harbour (Mediterranean Sea, Spain). Cross-infections using cultures and natural phytoplankton communities revealed that this chytrid is only able to infect certain species of dinoflagellates, with a rather wide host range but with a relative preference for Alexandrium species. Phylogenetic analyses showed that it belongs to the order Rhizophydiales, but cannot be included in any of the existing families within this order. Several ultrastructural characters confirmed the placement of this taxon within the Rhizophydiales as well its novelty notably in terms of zoospore structure. This marine chytridial parasitoid is described as a new genus and species, Dinomyces arenysensis, within the Dinomycetaceae fam. nov.


Assuntos
Organismos Aquáticos/microbiologia , Quitridiomicetos/classificação , Quitridiomicetos/isolamento & purificação , Dinoflagellida/microbiologia , Quitridiomicetos/genética , Quitridiomicetos/fisiologia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Genes de RNAr , Especificidade de Hospedeiro , Mar Mediterrâneo , Microscopia , Dados de Sequência Molecular , Filogenia , RNA Fúngico/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA , Espanha
20.
Gigascience ; 3(1): 2, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24606731

RESUMO

The co-authors of this paper hereby state their intention to work together to launch the Genomic Observatories Network (GOs Network) for which this document will serve as its Founding Charter. We define a Genomic Observatory as an ecosystem and/or site subject to long-term scientific research, including (but not limited to) the sustained study of genomic biodiversity from single-celled microbes to multicellular organisms.An international group of 64 scientists first published the call for a global network of Genomic Observatories in January 2012. The vision for such a network was expanded in a subsequent paper and developed over a series of meetings in Bremen (Germany), Shenzhen (China), Moorea (French Polynesia), Oxford (UK), Pacific Grove (California, USA), Washington (DC, USA), and London (UK). While this community-building process continues, here we express our mutual intent to establish the GOs Network formally, and to describe our shared vision for its future. The views expressed here are ours alone as individual scientists, and do not necessarily represent those of the institutions with which we are affiliated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...