Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38775241

RESUMO

The precise determination of surface transport coefficients at liquid interfaces is critical to an array of processes, ranging from atmospheric chemistry to catalysis. Building on our prior results that highlighted the emergence of a greatly reduced surface viscosity in simple liquids via the dispersion relation of surface excitations [Malgaretti et al., J. Chem. Phys. 158, 114705 (2023)], this work introduces a different approach to directly measure surface viscosity. We use modified Green-Kubo relations suitable for inhomogeneous systems to accurately quantify viscosity contributions from fluid slabs of variable thickness through extensive molecular dynamics simulations. This approach distinguishes the viscosity effects of the surface layer vs the bulk, offering an independent measure of surface viscosity and providing a more detailed understanding of interfacial dynamics and its transport coefficients.

2.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38785286

RESUMO

Hydrogen-bond networks in associating fluids can be extremely robust and characterize the topological properties of the liquid phase, as in the case of water, over its whole domain of stability and beyond. Here, we report on molecular dynamics simulations of hydrogen fluoride (HF), one of the strongest hydrogen-bonding molecules. HF has more limited connectivity than water but can still create long, dynamic chains, setting it apart from most other small molecular liquids. Our simulation results provide robust evidence of a second-order percolation transition of HF's hydrogen bond network occurring below the critical point. This behavior is remarkable as it underlines the presence of two different cohesive mechanisms in liquid HF, one at low temperatures characterized by a spanning network of long, entangled hydrogen-bonded polymers, as opposed to short oligomers bound by the dispersion interaction above the percolation threshold. This second-order phase transition underlines the presence of marked structural heterogeneity in the fluid, which we found in the form of two liquid populations with distinct local densities.

3.
J Phys Chem A ; 127(48): 10223-10232, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38000079

RESUMO

The coadsorption of two atmospheric trace gases on ice is characterized by using, for the first time, grand canonical Monte Carlo (GCMC) simulations performed in conditions similar to those of the corresponding experiments. Adsorption isotherms are simulated at tropospheric temperatures by considering two different gas mixtures of 1-butanol and acetic acid molecules, and selectivity of the ice surface with respect to these species is interpreted at the molecular scale as resulting from a competition process between these molecules for being adsorbed at the ice surface. It is thus shown that the trapping of acetic acid molecules on ice is always favored with respect to that of 1-butanol at low pressures, corresponding to low coverage of the surface, whereas the adsorption of the acid species is significantly modified by the presence of the alcohol molecules in the saturated portion of the adsorption isotherm, in accordance with the experimental observations. The present GCMC simulations thus confirm that competitive adsorption effects have to be taken into consideration in real situations when gas mixtures present in the troposphere interact with the surface of ice particles.

4.
J Phys Chem B ; 127(27): 6205-6216, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37399285

RESUMO

The role the charge sign of simple ions plays in determining their surface affinity in aqueous solutions is investigated by computer simulation methods. For this purpose, the free surface of aqueous solutions of fictitious salts is simulated at finite concentration both with nonpolarizable point-charge and polarizable Gaussian-charge potential models. The salts consist of monovalent cations and anions that are, apart from the sign of their charge, identical to each other. In particular, we consider the small Na+ and the large I- ions together with their charge-inverted counterparts. In an attempt to avoid the interference even between the behavior of cations and anions, we also simulate systems containing only one of the above ions, and determine the free energy profile of these ions across the liquid-vapor interface of water at infinite dilution by potential of mean force (PMF) calculations. The obtained results reveal that, in the case of small ions, the anion is hydrated considerably stronger than the cation due to the close approach of water H atoms, bearing a positive fractional charge. As a consequence, the surface affinity of a small anion is even smaller than that of its cationic counterpart. However, considering that small ions are effectively repelled from the water surface, the importance of this difference is negligible. Further, a change in the hydration energy trends of the two oppositely charged ions is observed with their increasing size. This change is largely attributed to the fact that, with increasing ion size, the factor of 2 in the magnitude of the fractional charge of the closely approaching water atoms (i.e., O around cations and H around anions) outweighs the closer approach of the H than the O atom in the hydration energy. Thus, for large ions, being already surface active themselves, the surface affinity of the anion is larger than that of its positively charged counterpart. Further, such a difference is seen even in the case when the sign of the surface potential favors the adsorption of cations.

5.
J Phys Chem B ; 127(23): 5341-5352, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37276239

RESUMO

The surface affinity of tetramethylammonium iodide (TMAI) in aqueous solutions is investigated by surface tension measurements and molecular dynamics computer simulations. Experiments, performed in the entire composition range of solubility using the pendant drop method with two different setups, clearly reveal that TMAI is a weakly capillary active salt. Computer simulations performed with the AMBER force field reproduce the experimental data very well, while two other major force fields (i.e., CHARMM and OPLS) can still reproduce the experimental trend qualitatively; however, even qualitative reproduction of the experimental trend requires scaling down the ion charges according to the Leontyev-Stuchebrukhov correction. On the other hand, the GROMOS force field fails in reproducing the experimentally confirmed capillary activity of TMAI. Molecular dynamics simulation results show that, among the two ions, iodide has a clearly larger surface affinity than tetramethylammonium (TMA+). Further, the adsorption of the I- anions is strictly limited to the first molecular layer beneath the liquid-vapor interface, which is followed by several layers of their depletion. On the other hand, the net negative charge of the surface layer, caused by the excess amount of I- with respect to TMA+, is compensated by a diffuse layer of adsorbed TMA+ cations, extending to or beyond the fourth molecular layer beneath the liquid surface.

6.
J Phys Chem B ; 127(27): 6078-6090, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37368412

RESUMO

General anesthesia can be caused by various, chemically very different molecules, while several other molecules, many of which are structurally rather similar to them, do not exhibit anesthetic effects at all. To understand the origin of this difference and shed some light on the molecular mechanism of general anesthesia, we report here molecular dynamics simulations of the neat dipalmitoylphosphatidylcholine (DPPC) membrane as well as DPPC membranes containing the anesthetics diethyl ether and chloroform and the structurally similar non-anesthetics n-pentane and carbon tetrachloride, respectively. To also account for the pressure reversal of anesthesia, these simulations are performed both at 1 bar and at 600 bar. Our results indicate that all solutes considered prefer to stay both in the middle of the membrane and close to the boundary of the hydrocarbon domain, at the vicinity of the crowded region of the polar headgroups. However, this latter preference is considerably stronger for the (weakly polar) anesthetics than for the (apolar) non-anesthetics. Anesthetics staying in this outer preferred position increase the lateral separation between the lipid molecules, giving rise to a decrease of the lateral density. The lower lateral density leads to an increased mobility of the DPPC molecules, a decreased order of their tails, an increase of the free volume around this outer preferred position, and a decrease of the lateral pressure at the hydrocarbon side of the apolar/polar interface, a change that might well be in a causal relation with the occurrence of the anesthetic effect. All these changes are clearly reverted by the increase of pressure. Furthermore, non-anesthetics occur in this outer preferred position in a considerably smaller concentration and hence either induce such changes in a much weaker form or do not induce them at all.


Assuntos
Anestesia , Anestésicos Gerais , Anestésicos Gerais/farmacologia , Bicamadas Lipídicas/química , Membranas , Clorofórmio/química , 1,2-Dipalmitoilfosfatidilcolina/química
7.
Soft Matter ; 19(21): 3773-3782, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098698

RESUMO

Investigating the structure of fluid interfaces at high temperatures is a particularly delicate task that requires effective ways of discriminating liquid from vapour and identifying the location of the liquid phase boundary, thereby allowing to distinguish intrinsic from capillary fluctuations. Several numerical approaches require introducing a coarse-graining length scale, often heuristically chosen to be the molecular size, to determine the location of the liquid phase boundary. Here, we propose an alternative rationale for choosing this coarse-graining length scale; we require the average position of the local liquid phase dividing surface to match its flat, macroscopic counterpart. We show that this approach provides additional insight into the structure of the liquid/vapour interface, suggesting the presence of another length scale beyond the bulk correlation one that plays an important role in determining the interface structure.

8.
J Chem Phys ; 158(11): 114705, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948818

RESUMO

The response of Newtonian liquids to small perturbations is usually considered to be fully described by homogeneous transport coefficients like shear and dilatational viscosity. However, the presence of strong density gradients at the liquid/vapor boundary of fluids hints at the possible existence of an inhomogeneous viscosity. Here, we show that a surface viscosity emerges from the collective dynamics of interfacial layers in molecular simulations of simple liquids. We estimate the surface viscosity to be 8-16 times smaller than that of the bulk fluid at the thermodynamic point considered. This result can have important implications for reactions at liquid surfaces in atmospheric chemistry and catalysis.

9.
J Phys Chem B ; 127(11): 2534-2545, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36892904

RESUMO

While the physicochemical properties as well as the NMR and vibration spectroscopic data of the mixtures of ionic liquids (ILs) with molecular solvents undergo a drastic change around the IL mole fraction of 0.2, the local structure of the mixtures pertaining to this behavior remains unclear. In this work, the local structure of 12 mixtures of 1-butyl-3-methylimidazolium cation (C4mim+) combined with perfluorinated anions, such as tetrafluoroborate (BF4-), hexafluorophosphate (PF6-), trifluoromethylsulfonate (TFO-), and bis(trifluoromethanesulfonyl)imide, (TFSI-), and aprotic dipolar solvents, such as acetonitrile (AN), propylene carbonate (PC), and gamma butyrolactone (γ-BL) is studied by molecular dynamics simulations in the entire composition range, with an emphasis on the IL mole fractions around 0.2. Distributions of metric properties corresponding to the Voronoi polyhedra of the particles (volume assigned to the particles, local density, radius of spherical voids) are determined, using representative sites of the cations, anions, and the solvent molecules, to characterize the changes in the local structure of these mixtures. By analyzing the mole fraction dependence of the average value, fluctuation, and skewness parameter of these distributions, the present study reveals that, around the IL mole fraction of 0.2, the local structure of the mixture undergoes a transition between that determined by the interionic interactions and that determined by the interactions between the ions and solvent molecules. It should be noted that the strength of the interactions between the ions and the solvent molecules, modulated by the change in the composition of the mixture, plays an important role in the occurrence of this transition. The signature of the change in the local structure is traced back to the nonlinear change of the mean values, fluctuations, and skewness values of the metric Voronoi polyhedra distributions.

10.
J Phys Chem B ; 127(4): 1050-1062, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36652674

RESUMO

The liquid-vapor interface of N,N-dimethylformamide (DMF)-water mixtures, spanning the entire composition range, is investigated in detail at 298 K by molecular dynamics simulation and intrinsic surface analysis. DMF molecules are found to adsorb strongly at the liquid surface, but this adsorption extends only to the first molecular layer. Water and DMF molecules mix with each other on the molecular scale even in the surface layer; thus, no marked self-association of any of the components is seen at the liquid surface. The major surface component prefers such orientation in which the molecular dipole vector lays parallel with the macroscopic plane of the surface. On the other hand, the preferred orientation of the minor component is determined, at both ends of the composition range, by the possibility of H-bond formation with the major component. The lack of H-donating ability of DMF leads to a rapid breakup of the percolating H-bond network at the surface; due to the strong adsorption of DMF, this breakup occurs below the bulk phase DMF mole fraction of 0.03. The disruption of the surface H-bond network also accelerates the exchange of both species between the liquid surface and bulk liquid phase, although, for water, this effect becomes apparent only above a bulk phase DMF mole fraction of 0.4. H-bonds formed by a DMF and a water molecule live, on average, 25-60% longer than those formed by two water molecules at the liquid surface. A similar, but smaller (i.e., about 10-20%) difference is seen in the bulk liquid phase. The enhanced surface mobility of the molecules results in 2-6 times larger diffusion coefficient and 2-5 times shorter H-bond lifetime values at the liquid surface than in the bulk liquid phase. The diffusion of both molecules is slowed down in the presence of the other species; in the case of DMF, this effect is caused by the formation of water-DMF H-bonds, whereas for water, steric hindrances imposed by the bulky DMF neighbors are responsible for this slowing down.

11.
J Phys Chem B ; 126(36): 6964-6978, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36044401

RESUMO

Molecular dynamics simulations of mixtures of N,N-dimethylformamide (DMF) with water of various compositions, covering the entire composition range, are performed on the canonical (N,V,T) ensemble. The local structure of the mixtures is analyzed in terms of radial distribution functions and the contributions of the first five neighbors to them, various order parameters of the water molecules around each other, and properties of the Voronoi polyhedra of the molecules. The analyses lead to the following main conclusions. The two molecules are mixing with each other even on the molecular scale; however, small self-aggregates of both components persist even at their small mole fraction values. In particular, water-water H-bonds exist in the entire composition range, while water clusters larger than 3 and 2 molecules disappear above the DMF mole fraction values of about 0.7 and 0.9, respectively. The O atoms of the DMF molecules can well replace water O atoms in the hydrogen-bonding network. Further, the H-bonding structure is enhanced by the presence of the hydrophobic CH3 groups of the DMF molecules. On the other hand, the H-bonding network of the molecules gradually breaks down upon the addition of DMF to the system due to the lack of H-donating groups of the DMF molecules. Finally, in neat DMF, the molecules form weak, CH-donated H-bonds with each other; however, these H-bonds disappear upon the addition of water due to the increasing competition with the considerably stronger OH-donated H-bonds DMF can form with the water molecules.


Assuntos
Dimetilformamida , Água , Dimetilformamida/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Água/química
12.
J Chem Phys ; 156(22): 224702, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705408

RESUMO

In this paper, we report grand canonical Monte Carlo simulations performed to characterize the adsorption of four linear alcohol molecules, comprising between two and five carbon atoms (namely, ethanol, n-propanol, n-butanol, and n-pentanol) on crystalline ice in a temperature range typical of the Earth's troposphere. The adsorption details analyzed at 228 K show that, at low coverage of the ice surface, the polar head of the adsorbed molecules tends to optimize its hydrogen bonding with the surrounding water, whereas the aliphatic chain lies more or less parallel to the ice surface. With increasing coverage, the lateral interactions between the adsorbed alcohol molecules lead to the reorientation of the aliphatic chains that tend to become perpendicular to the surface; the adsorbed molecules pointing thus their terminal methyl group up to the gas phase. When compared to the experimental data, the simulated and measured isotherms show a very good agreement, although a small temperature shift between simulations and experiments could be inferred from simulations at various temperatures. In addition, this agreement appears to be better for ethanol and n-propanol than for n-butanol and n-pentanol, especially at the highest pressures investigated, pointing to a possible slight underestimation of the lateral interactions between the largest alcohol molecules by the interaction potential model used. Nevertheless, the global accuracy of the approach used, as tested under tropospheric conditions, opens the way for its use in modeling studies also relevant to another (e.g., astrophysical) context.

13.
J Chem Phys ; 156(18): 184703, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568547

RESUMO

The adsorption of acetamide on low density amorphous (LDA) ice is investigated by grand canonical Monte Carlo computer simulations at the temperatures 50, 100, and 200 K, characteristic of certain domains of the interstellar medium (ISM). We found that the relative importance of the acetamide-acetamide H-bonds with respect to the acetamide-water ones increases with decreasing temperature. Thus, with decreasing temperature, the existence of the stable monolayer, characterizing the adsorption at 200 K, is gradually replaced by the occurrence of marked multilayer adsorption, preceding even the saturation of the first layer at 50 K. While isolated acetamide molecules prefer to lay parallel to the ice surface to maximize their H-bonding with the surface water molecules, this orientational preference undergoes a marked change upon saturation of the first layer due to increasing competition of the adsorbed molecules for H-bonds with water and to the possibility of their H-bond formation with each other. As a result, molecules stay preferentially perpendicular to the ice surface in the saturated monolayer. The chemical potential value corresponding to the point of condensation is found to decrease linearly with increasing temperature. We provide, in analogy with the Clausius-Clapeyron equation, a thermodynamic explanation of this behavior and estimate the molar entropy of condensed phase acetamide to be 34.0 J/mol K. For the surface concentration of the saturated monolayer, we obtain the value 9.1 ± 0.8 µmol/m2, while the heat of adsorption at infinitely low surface coverage is estimated to be -67.8 ± 3.0 kJ/mol. Our results indicate that the interstellar formation of peptide chains through acetamide molecules, occurring at the surface of LDA ice, might well be a plausible process in the cold (i.e., below 50 K) domains of the ISM; however, it is a rather unlikely scenario in its higher temperature (i.e., 100-200 K) domains.


Assuntos
Gelo , Água , Acetamidas , Adsorção , Simulação por Computador , Água/química
14.
J Phys Chem A ; 126(7): 1221-1232, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35168326

RESUMO

The adsorption of benzonitrile at the surface of crystalline (Ih) and low-density amorphous (LDA) ice has been investigated by grand canonical Monte Carlo simulations at temperatures ranging from 50 to 200 K. It is found that, in spite of its rather large dipole moment of 4.5 D, benzonitrile molecules can only form a highly unsaturated monolayer on LDA ice, reaching not more than 50% of the surface concentration of the saturated monolayer even at the lowest temperature considered, and they practically do not adsorb on Ih ice. In spite of the observed weak ability of the benzonitrile molecules for being adsorbed, the estimated heat of adsorption at an infinitely low surface concentration of -66.8 ± 2.2 kJ/mol is rather large. This value includes the contribution of roughly -30 to -35 kJ/mol of a benzene ring, about -10 kJ/mol of a large molecular dipole moment, and about -20 to -25 kJ/mol of a benzonitrile-water H-bond, as estimated from comparisons with the heat of adsorption values of similar molecules. The surprisingly weak ability of benzonitrile for adsorption is thus attributed to the unusually strong cohesion between the molecules, considerably exceeding their adhesion to ice, as reflected in the 70-80 kJ/mol difference of the lateral and ice contributions to the binding energy of surface benzonitrile molecules in the presence of condensed benzonitrile.

15.
J Phys Chem B ; 126(4): 751-765, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34904437

RESUMO

The surface of aqueous solutions of simple salts was not the main focus of scientific attention for a long while. Considerable interest in studying such systems has only emerged in the past two decades, following the pioneering finding that large halide ions, such as I-, exhibit considerable surface affinity. Since then, a number of issues have been clarified; however, there are still several unresolved points (e.g., the effect of various salts on lateral water diffusion at the surface) in this respect. Computer simulation studies of the field have largely benefited from the appearance of intrinsic surface analysis methods, by which the particles staying right at the boundary of the two phases can be unambiguously identified. Considering complex ions instead of simple ones opens a number of interesting questions, both from the theoretical point of view and from that of the applications. Besides reviewing the state-of-the-art of intrinsic surface analysis methods as well as the most important advances and open questions concerning the surface of simple ionic solutions, we focus on two such systems in this Perspective, namely, the surface of aqueous mixtures of room temperature ionic liquids and that of ionic surfactants. In the case of the former systems, for which computer simulation studies have still scarcely been reported, we summarize the theoretical advances that could trigger such investigations, which might well be of importance also from the point of view of industrial applications. Computer simulation methods are, on the other hand, widely used in studies of the surface of surfactant solutions. Here we review the most important theoretical advances and issues to be addressed and discuss two areas of applications, namely, the inclusion of information gathered from such simulations in large scale atmospheric models and the better understanding of the airborne transmission of viruses, such as SARS-CoV-2.


Assuntos
COVID-19 , Tensoativos , Simulação por Computador , Humanos , Íons , SARS-CoV-2 , Soluções , Água
16.
J Phys Chem B ; 125(31): 9005-9018, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34319728

RESUMO

Understanding the role of the counterion species in surfactant solutions is a complicated task, made harder by the fact that, experimentally, it is not possible to vary independently bulk and surface quantities. Here, we perform molecular dynamics simulations at constant surface coverage of the liquid/vapor interface of lithium, sodium, potassium, rubidium, and cesium dodecyl sulfate aqueous solutions. We investigate the effect of counterion type and charge sign on the surface tension of the solution, analyzing the contribution of different species and moieties to the lateral pressure profile. The observed trends are qualitatively compatible with the Hofmeister series, with the notable exception of sodium. We point out a possible shortcoming of what is at the moment, in our experience, the most realistic nonpolarizable force field (CHARMM36) that includes the parametrization for the whole series of alkali counterions. In the artificial system where the counterion and surfactant charges are inverted in sign, the counterions become considerably harder. This charge inversion changes considerably the surface tension contributions of the counterions, surfactant headgroups, and water molecules, stressing the key role of the hardness of the counterions in this respect. However, the hydration free energy gain of the counterions, occurring upon charge inversion, is compensated by the concomitant free energy loss of the headgroups and water molecules, leading to a negligible change in the surface tension of the entire system.


Assuntos
Tensoativos , Água , Íons , Simulação de Dinâmica Molecular , Tensão Superficial
17.
J Phys Chem B ; 125(18): 4819-4830, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33947181

RESUMO

The Helmholtz free energy, energy, and entropy of mixing of N,N-dimethylformamide (DMF) and water are calculated in the entire composition range by means of Monte Carlo computer simulations and thermodynamic integration using all possible combinations of five DMF and three widely used water models. Our results reveal that the mixing of DMF and water is highly non-ideal. Thus, in their dilute solutions, both molecules induce structural ordering of the major component, as evidenced by the concomitant decrease in the entropy. Among the 15 model combinations considered, only 4 reproduce the well-known full miscibility of DMF and water, 3 of which strongly exaggerate the thermodynamic driving force of the miscibility. Thus, the combination of the CS2 model of DMF and the TIP4P/2005 water model reproduces the properties of the DMF-water mixtures far better than the other combinations tested. Our results also reveal that moving a fractional negative charge from the N atom to the O atom of the DMF molecule, leading to the increase in its dipole moment, improves the miscibility of the model with water. Starting from the CS2 model and optimizing the charge to be moved, we propose a new model of DMF that reproduces very accurately both the Helmholtz free energy of mixing of aqueous DMF solutions in the entire composition range (when used in combination with the TIP4P/2005 water model) and also the internal energy of neat DMF.

18.
J Phys Chem B ; 125(2): 665-679, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33423500

RESUMO

The distribution of ions in the proximity of the liquid-vapor interface of their aqueous solution has been the subject of an intense debate during the last decade. The effects of ionic polarizability have been one of its salient aspects. Much less has been said about the corresponding dynamical properties, which are substantially unexplored. Here, we investigate the single-particle dynamics at the liquid-vapor interface of several alkali halide solutions, using molecular dynamics simulations with polarizable and nonpolarizable force fields and intrinsic surface analysis. We analyze the diffusion coefficient, residence time, and velocity autocorrelation function of water and ions and investigate how these properties depend on the molecular layer where they reside. While anions are found in the first molecular layer for relatively long times, cations are only making quick excursions into it, thanks to thermal fluctuations. The in-layer residence time of ions and their molar fraction in the layer turned out to be linearly dependent on each other. We interpret this unexpected result using a simple two-state model. In addition, we found that, unlike water and other neat molecular liquids that show a different diffusion mechanism at the surface than in the bulk of their liquid phase, ions do not enjoy enhanced mobility in the surface layer of their aqueous solution. This result indicates that ions in the surface layer are shielded by their nearest water neighbors from being exposed to the vapor phase as much as possible. Such positions are available for the ions at the negatively curved troughs of the molecularly rugged liquid surface.

19.
J Phys Chem B ; 124(46): 10419-10434, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33151074

RESUMO

The inhomogeneity distribution in four imidazolium-based ionic liquids (ILs) containing the 1-butyl-3-methylimidazolium (C4mim) cation, coupled with tetrafluoroborate (BF4), hexafluorophosphate (PF6), bis(trifluoromethanesulfonyl)amide (TFSA), and trifluoromethanesulfonate (TfO) anions, was characterized using Voronoi polyhedra. For this purpose, molecular dynamic simulations have been performed on the isothermal-isobaric (NpT) ensemble. We checked the ability of the potential models to reproduce the experimental density, heat of vaporization, and transport properties (diffusion and viscosity) of these ionic liquids. The inhomogeneity distribution of ions around the ring, methyl, and butyl chain terminal hydrogen atoms of the C4mim cation was investigated by means of Voronoi polyhedra analysis. For this purpose, the position of the C4mim cation was described successively by the ring, methyl, and butyl chain terminal hydrogen atoms, while that of the anions was described by their F or O atom. We calculated the Voronoi polyhedra distributions of the volume, the density, and the asphericity parameters as well as that of the radius of the spherical intermolecular voids. We carried out the analysis in two steps. In the first step, both ions were taken into account. The calculated distributions gave information on the neighboring ions around a reference one. In the second step, to distinguish between like and oppositely charged ions and then to get information on the inhomogeneity distribution of the like ions, we repeated the same calculations on the same sample configurations and removed one of the ions and considered only the other one. Detailed analysis of these distributions has revealed that the ring hydrogen atoms are mainly solvated by the anions, while the methyl and butyl terminal H atoms are surrounded by like atoms. The extent of this inhomogeneity was assessed by calculating the cluster size distribution that shows that the dimers are the most abundant ones.

20.
J Phys Chem B ; 124(44): 9884-9897, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33084342

RESUMO

The surface tension of all aqueous alkali halide solutions is higher than that of pure water. According to the Gibbs adsorption equation, this indicates a net depletion of these ions in the interfacial region. However, simulations and experiments show that large, soft ions, such as I-, can accumulate at the liquid/vapor interface. The presence of a loose hydration shell is usually considered to be the reason for this behavior. In this work, we perform computer simulations to characterize the liquid-vapor interface of aqueous alkali chloride and sodium halide solutions systematically, considering all ions from Li+ to Cs+ and from F- to I-. Using computational methods for the removal of surface fluctuations, we analyze the structure of the interface at a dramatically enhanced resolution, showing that the positive excess originates in the very first molecular layer and that the next 3-4 layers account for the net negative excess. With the help of a fictitious system with charge-inverted ion pairs, we also show that it is not possible to rationalize the surface affinity of ions in solutions in terms of the properties of anions and cations separately. Moreover, the surface excess is generally dominated by the smaller of the two ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...