Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 34(11): 1809-1823.e6, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323236

RESUMO

Mitochondria have their own DNA (mtDNA), which is susceptible to the accumulation of disease-causing mutations. To prevent deleterious mutations from being inherited, the female germline has evolved a conserved quality control mechanism that remains poorly understood. Here, through a large-scale screen, we uncover a unique programmed germline mitophagy (PGM) that is essential for mtDNA quality control. We find that PGM is developmentally triggered as germ cells enter meiosis by inhibition of the target of rapamycin complex 1 (TORC1). We identify a role for the RNA-binding protein Ataxin-2 (Atx2) in coordinating the timing of PGM with meiosis. We show that PGM requires the mitophagy receptor BNIP3, mitochondrial fission and translation factors, and members of the Atg1 complex, but not the mitophagy factors PINK1 and Parkin. Additionally, we report several factors that are critical for germline mtDNA quality control and show that pharmacological manipulation of one of these factors promotes mtDNA quality control.


Assuntos
DNA Mitocondrial , Mitofagia , Mitofagia/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Células Germinativas/metabolismo , Controle de Qualidade
2.
Annu Rev Genomics Hum Genet ; 22: 55-80, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34038145

RESUMO

Mitochondria are unusual organelles in that they contain their own genomes, which are kept apart from the rest of the DNA in the cell. While mitochondrial DNA (mtDNA) is essential for respiration and most multicellular life, maintaining a genome outside the nucleus brings with it a number of challenges. Chief among these is preserving mtDNA genomic integrity from one generation to the next. In this review, we discuss what is known about negative (purifying) selection mechanisms that prevent deleterious mutations from accumulating in mtDNA in the germline. Throughout, we focus on the female germline, as it is the tissue through which mtDNA is inherited in most organisms and, therefore, the tissue that most profoundly shapes the genome. We discuss recent progress in uncovering the mechanisms of germline mtDNA selection, from humans to invertebrates.


Assuntos
DNA Mitocondrial , Mitocôndrias , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Células Germinativas , Humanos , Mitocôndrias/genética , Mutação
3.
Nat Commun ; 11(1): 4608, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929085

RESUMO

Actinobacteria produce antibacterial and antifungal specialized metabolites. Many insects harbour actinobacteria on their bodies or in their nests and use these metabolites for protection. However, some actinobacteria produce metabolites that are toxic to insects and the evolutionary relevance of this toxicity is unknown. Here we explore chemical interactions between streptomycetes and the fruit fly Drosophila melanogaster. We find that many streptomycetes produce specialized metabolites that have potent larvicidal effects against the fly; larvae that ingest spores of these species die. The mechanism of toxicity is specific to the bacterium's chemical arsenal: cosmomycin D producing bacteria induce a cell death-like response in the larval digestive tract; avermectin producing bacteria induce paralysis. Furthermore, low concentrations of volatile terpenes like 2-methylisoborneol that are produced by streptomycetes attract fruit flies such that they preferentially deposit their eggs on contaminated food sources. The resulting larvae are killed during growth and development. The phenomenon of volatile-mediated attraction and specialized metabolite toxicity suggests that some streptomycetes pose an evolutionary risk to insects in nature.


Assuntos
Bactérias/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/microbiologia , Actinobacteria/fisiologia , Animais , Antraciclinas/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Canfanos/toxicidade , Morte Celular/efeitos dos fármacos , Drosophila melanogaster/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/microbiologia , Metaboloma , Esporos Bacterianos/metabolismo , Esporos Bacterianos/fisiologia , Streptomyces/fisiologia , Análise de Sobrevida , Compostos Orgânicos Voláteis/farmacologia
4.
PLoS One ; 15(9): e0237981, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903271

RESUMO

Serine hydroxymethyltransferase 2 (SHMT2) converts serine plus tetrahydrofolate (THF) into glycine plus methylene-THF and is upregulated at the protein level in lung and other cancers. In order to better understand the role of SHMT2 in cancer a model system of HeLa cells engineered for inducible over-expression or knock-down of SHMT2 was characterized for cell proliferation and changes in metabolites and proteome as a function of SHMT2. Ectopic over-expression of SHMT2 increased cell proliferation in vitro and tumor growth in vivo. Knockdown of SHMT2 expression in vitro caused a state of glycine auxotrophy and accumulation of phosphoribosylaminoimidazolecarboxamide (AICAR), an intermediate of folate/1-carbon-pathway-dependent de novo purine nucleotide synthesis. Decreased glycine in the HeLa cell-based xenograft tumors with knocked down SHMT2 was potentiated by administration of the anti-hyperglycinemia agent benzoate. However, tumor growth was not affected by SHMT2 knockdown with or without benzoate treatment. Benzoate inhibited cell proliferation in vitro, but this was independent of SHMT2 modulation. The abundance of proteins of mitochondrial respiration complexes 1 and 3 was inversely correlated with SHMT2 levels. Proximity biotinylation in vivo (BioID) identified 48 mostly mitochondrial proteins associated with SHMT2 including the mitochondrial enzymes Acyl-CoA thioesterase (ACOT2) and glutamate dehydrogenase (GLUD1) along with more than 20 proteins from mitochondrial respiration complexes 1 and 3. These data provide insights into possible mechanisms through which elevated SHMT2 in cancers may be linked to changes in metabolism and mitochondrial function.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicina Hidroximetiltransferase/metabolismo , Neoplasias Pulmonares/patologia , Metaboloma , Proteoma/análise , Serina/metabolismo , Animais , Antifúngicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Glicina Hidroximetiltransferase/antagonistas & inibidores , Glicina Hidroximetiltransferase/genética , Células HeLa , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Domínios e Motivos de Interação entre Proteínas , Benzoato de Sódio/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nature ; 570(7761): 380-384, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31092924

RESUMO

Mitochondria contain their own genomes that, unlike nuclear genomes, are inherited only in the maternal line. Owing to a high mutation rate and low levels of recombination of mitrochondrial DNA (mtDNA), special selection mechanisms exist in the female germline to prevent the accumulation of deleterious mutations1-5. However, the molecular mechanisms that underpin selection are poorly understood6. Here we visualize germline selection in Drosophila using an allele-specific fluorescent in situ-hybridization approach to distinguish wild-type from mutant mtDNA. Selection first manifests in the early stages of Drosophila oogenesis, triggered by reduction of the pro-fusion protein Mitofusin. This leads to the physical separation of mitochondrial genomes into different mitochondrial fragments, which prevents the mixing of genomes and their products and thereby reduces complementation. Once fragmented, mitochondria that contain mutant genomes are less able to produce ATP, which marks them for selection through a process that requires the mitophagy proteins Atg1 and BNIP3. A reduction in Atg1 or BNIP3 decreases the amount of wild-type mtDNA, which suggests a link between mitochondrial turnover and mtDNA replication. Fragmentation is not only necessary for selection in germline tissues, but is also sufficient to induce selection in somatic tissues in which selection is normally absent. We postulate that there is a generalizable mechanism for selection against deleterious mtDNA mutations, which may enable the development of strategies for the treatment of mtDNA disorders.


Assuntos
DNA Mitocondrial/genética , Drosophila/citologia , Drosophila/genética , Células Germinativas/metabolismo , Mitocôndrias/genética , Mitofagia , Trifosfato de Adenosina/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , DNA Mitocondrial/isolamento & purificação , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Feminino , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação
6.
J Mol Biol ; 430(24): 4834-4848, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30385240

RESUMO

Numerous mitochondrial quality control mechanisms exist within cells, but none have been shown to effectively assess and control the quality of mitochondrial DNA (mtDNA). One reason such mechanisms have yet to be elucidated is that they do not appear to be particularly active in most somatic cells, where many studies are conducted. The female germline, the cell lineage that gives rise to eggs, appears to be an exception. In the germline, strong purifying selection pathways act to eliminate deleterious mtDNA. These pathways have apparently evolved to prevent pathogenic mtDNA mutations from accumulating over successive generations and causing a decline of species via Muller's ratchet. Despite their fundamental biological importance, the mechanisms underlying purifying selection remain poorly understood, with no genes involved in this process yet identified. In this review, we discuss recent studies exploring mechanisms of germline mtDNA purifying selection in both mammalian and invertebrate systems. We also discuss the challenges to future major advances. Understanding the molecular basis of purifying selection is not only a fundamental outstanding question in biology, but may also pave the way to controlling selection in somatic tissues, potentially leading to treatments for people suffering from mitochondrial diseases.


Assuntos
DNA Mitocondrial/genética , Invertebrados/genética , Mamíferos/genética , Mitocôndrias/genética , Óvulo/citologia , Animais , Evolução Molecular , Feminino , Humanos , Invertebrados/crescimento & desenvolvimento , Mamíferos/crescimento & desenvolvimento , Herança Materna , Óvulo/química , Controle de Qualidade , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...