Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 23(3): 215, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37389664

RESUMO

Potatoes in India are very susceptible to apical leaf curl disease, which causes severe symptoms and greater yield losses. Because the majority of potato cultivars are susceptible to the virus, it is crucial to discover sources of resistance and investigate the mechanism of resistance/susceptibility in potato cultivars. In this study, the gene expression profile of two potato cultivars, Kufri Bahar (resistant) and Kufri Pukhraj (susceptible), varying in their level of resistance to ToLCNDV, was analyzed using RNA-Seq. The Ion ProtonTM system was used to sequence eight RiboMinus RNA libraries from inoculated and uninoculated potato plants at 15 and 20 days after inoculation (DAI). The findings indicated that the majority of differentially expressed genes (DEGs) were cultivar-or time-specific. These DEGs included genes for proteins that interact with viruses, genes linked with the cell cycle, genes for proteins involved in defense, transcription and translation initiation factors, and plant hormone signaling pathway genes. Interestingly, defense responses were generated early in Kufri Bahar, at 15 DAI, which may have impeded the replication and spread of ToLCNDV. This research provides a genome-wide transcriptional analysis of two potato cultivars with variable levels of ToLCNDV resistance. At an early stage, we observed suppression of genes that interact with viral proteins, induction of genes associated with restriction of cell division, genes encoding defense proteins, AP2/ERF transcription factors, and altered expression of zinc finger protein genes, HSPs, JA, and SA pathway-related genes. Our findings add to a greater comprehension of the molecular basis of potato resistance to ToLCNDV and may aid in the development of more effective disease management techniques.


Assuntos
Begomovirus , Solanum tuberosum , Solanum tuberosum/genética , RNA-Seq , Biblioteca Gênica
2.
3 Biotech ; 11(4): 203, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33927993

RESUMO

Nucleotide sequence of complete genome of a new isolate (KAN-6) of tomato leaf curl New Delhi virus (ToLCNDV) from Kanpur, Uttar Pradesh, India was determined. Sequence analysis indicated that it shared maximum identity to ToLCNDV isolates from pumpkin and ashgourd. Infectious clones of isolate KAN-6 along with two other ToLCNDV isolates (MOD-21 & FAI-19) obtained from potato fields of Modipuram and Faizabad, India were produced and used in symptom expression studies in N. benthamiana and potato plants through agro-inoculation. These isolates produced different symptoms both in N. benthamiana and potato. Severe symptoms of yellow mottling, downward curling and stunted growth were observed in N. benthamiana plants inoculated with KAN-6. MOD-21-inoculated plants also showed downward curling, stunted growth, but yellow mottling was observed only in older leaves whereas FAI-19-inoculated plants produced only downward curling symptoms. In case of potato, typical symptoms of apical leaf curl disease were observed in cultivar Kufri Pukhraj inoculated with MOD-21 and KAN-6 that are similar to those produced by virus-infected plants in the field. However, MOD-21 produced more prominent yellow mosaic symptoms as compared to KAN-6. FAI-19 produced only restricted yellow spots in Kufri Pukhraj. Only mild symptoms appeared in KAN-6 and no symptoms were observed in MOD-21- and FAI-19-inoculated Kufri Bahar plants which is known to show lowest seed degeneration under field conditions. Analysis of genomic components indicated that these isolates had 94.8-94.9% and 87.9-97.3% identity among them in DNA A and DNA B, respectively. The results of the study indicate the association of ToLCNDV isolates of different symptomatology with apical leaf curl disease of potato. This is also a first experimental demonstration of Koch's postulate for a begomovirus associated with apical leaf curl disease of potato.Author names: Please confirm if the author names (Swarup Kumar Chakrabarti) are presented accurately and in the correct sequence (given name, middle name/initial, family name).Yes. It is correct. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02752-5.

3.
Virus Res ; 232: 22-33, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28115198

RESUMO

Apical leaf curl disease, caused by tomato leaf curl New Delhi virus-[potato] (ToLCNDV-[potato]) is one of the most important viral diseases of potato in India. Genetic resistance source for ToLCNDV in potato is not identified so far. However, the cultivar Kufri Bahar is known to show lowest seed degeneration even under high vector levels. Hence, microarray analysis was performed to identify differentially regulated genes during ToLCNDV-[potato] infection in a resistant (Kufri Bahar) and a susceptible cultivar (Kufri Pukhraj). Under artificial inoculation conditions, in Kufri Pukhraj, symptom expressions started at 15days after inoculation (DAI) and then progressed to severe symptoms, whereas no or only very mild symptoms were observed in Kufri Bahar up to 35 DAI. Correspondingly, qPCR assay indicated a high viral load in Kufri Pukhraj and a very low viral load in Kufri Bahar. Microarray analysis showed that a total of 1111 genes and 2588 genes were differentially regulated (|log2 (Fold Change)|>2) in Kufri Bahar and Kufri Pukhraj, respectively, following ToLCNDV-[potato] infection. Gene ontology and mapman analyses revealed that these altered transcripts were involved in various biological & metabolic processes. Several genes with unknown functions were 5 to 100 fold expressed after virus infection and further experiments are necessary to ascertain their role in disease resistance or susceptibility. This study gives an insight into differentially regulated genes in response to ToLCNDV-[potato] infection in resistant and susceptible cultivars and could serve as the basis for the development of new strategies for disease management.


Assuntos
Begomovirus/patogenicidade , Resistência à Doença/genética , Suscetibilidade a Doenças/imunologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Begomovirus/fisiologia , Perfilação da Expressão Gênica , Ontologia Genética , Genótipo , Interações Hospedeiro-Patógeno , Análise em Microsséries , Anotação de Sequência Molecular , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/virologia , Proteínas de Plantas/imunologia , Transdução de Sinais , Solanum tuberosum/imunologia , Solanum tuberosum/virologia , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...