Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652113

RESUMO

Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4, but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here, we identify the domains of LRMP essential for this regulation, show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating, and demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we identified the initial 227 residues of LRMP and the N-terminus of HCN4 as necessary for LRMP to associate with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. Finally, we demonstrated that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of five residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating, most likely via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.


Assuntos
AMP Cíclico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Proteínas de Membrana , Proteínas Musculares , Receptores Citoplasmáticos e Nucleares , Transdução de Sinais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , AMP Cíclico/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Animais , Ligação Proteica , Células HEK293 , Canais de Potássio/metabolismo , Canais de Potássio/genética , Canais de Potássio/química , Técnicas de Patch-Clamp , Transferência Ressonante de Energia de Fluorescência , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
2.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37693562

RESUMO

Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4 but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here we identify the domains of LRMP essential for regulation. We show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating. And we demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we showed that the initial 227 residues of LRMP and the N-terminus of HCN4 are necessary for LRMP to interact with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. And we demonstrate that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of 5 residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.

3.
Ann Surg ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38073572

RESUMO

OBJECTIVE: We aimed to investigate if ex vivo plasma from injured patients causes endothelial calcium (Ca2+) influx as a mechanism of trauma-induced endothelial permeability. SUMMARY BACKGROUND DATA: Endothelial permeability after trauma contributes to post-injury organ dysfunction. While the mechanisms remain unclear, emerging evidence suggests intracellular Ca2+ signaling may play a role. METHODS: Ex vivo plasma from injured patients with "Low Injury/Low Shock" (injury severity score [ISS]<15, base excess [BE])≥-6mEq/L) and "High Injury/High Shock" (ISS≥15, BE<-6mEq/L) were used to treat endothelial cells. Experimental conditions included Ca2+ removal from the extracellular buffer, cyclopiazonic acid pre-treatment to deplete intracellular Ca2+ stores, and GSK2193874 pre-treatment to block the TRPV4 Ca2+ channel. Live cell fluorescence microscopy and ECIS were used to assess cytosolic Ca2+ increases and permeability, respectively. Western blot and live cell actin staining were used to assess myosin light chain (MLC) phosphorylation and actomyosin contraction. RESULTS: Compared to Low Injury/Low Shock plasma, High Injury/High Shock induced greater cytosolic Ca2+ increase. Cytosolic Ca2+ increase, MLC phosphorylation, and actin cytoskeletal contraction were lower without extracellular Ca2+ present. High Injury/High Shock plasma did not induce endothelial permeability without extracellular Ca2+ present. TRPV4 inhibition lowered trauma plasma-induced endothelial Ca2+ influx and permeability. CONCLUSIONS: This study illuminates a novel mechanism of post-injury endotheliopathy involving Ca2+ influx via the TRPV4 channel. TRPV4 inhibition mitigates trauma-induced endothelial permeability. Moreover, widespread endothelial Ca2+ influx may contribute to trauma-induced hypocalcemia. This study provides the mechanistic basis for the development of Ca2+-targeted therapies and interventions in the care of severely injured patients.

4.
bioRxiv ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37645715

RESUMO

Arteries and arterioles exhibit myogenic tone, a partially constricted state that allows further constriction or dilation in response to moment-to-moment fluctuations in blood pressure. The vascular endothelium that lines the internal surface of all blood vessels controls a wide variety of essential functions, including the contractility of the adjacent smooth muscle cells by providing a tonic vasodilatory influence. Studies conducted on large (pial) arteries on the surface of the brain have shown that estrogen lowers myogenic tone in female mice by enhancing nitric oxide (NO) release from the endothelium, however, whether this difference extends to the intracerebral microcirculation remains ambiguous. The existing incomplete picture of sex differences in cerebrovascular physiology combined with a deficiency in treatments that fully restore cognitive function after cerebrovascular accidents places heavy emphasis on the necessity to investigate myogenic tone regulation in the microcirculation from both male and female mice. We hypothesized that sex-linked hormone regulation of myogenic tone extends its influence on the microcirculation level, and sought to characterize it in isolated arterioles from the hippocampus, a major cognitive brain area. Using diameter measurements both in vivo (acute cranial window vascular diameter) and ex vivo (pressure myography experiments), we measured lower myogenic tone responses in hippocampal arterioles from female than male mice. By using a combined surgical and pharmacological approach, we found myogenic tone in ovariectomized (OVX) female mice matches that of males, as well as in endothelium-denuded arterioles. Interestingly, eNOS inhibition induced a larger constriction in female arterioles but only partially abolished the difference in tone. We identified that the remnant difference was mediated by a higher activity and expression of the small-conductance Ca 2+ -sensitive K + (SK) channels. Collectively, these data indicate that eNOS and SK channels exert greater vasodilatory influence over myogenic tone in female mice at physiological pressures.

5.
Neurophotonics ; 9(3): 031919, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36278784

RESUMO

Significance: Vascular mural cells, defined as smooth muscle cells (SMCs) and pericytes, influence brain microcirculation, but how they contribute is not fully understood. Most approaches used to investigate pericyte and capillary interactions include ex vivo retinal/slice preparations or in vivo two-photon microscopy. However, neither method adequately captures mural cell behavior without interfering neuronal tissue. Thus, there is a need to isolate vessels with their respective mural cells to study functional and pathological changes. Aim: The aim of our work was to implement an ex vivo method that recapitulates vessel dynamics in the brain. Approach: Expanding upon our established ex vivo capillary-parenchymal arteriole (CaPA) preparation, we isolated and pressurized arteriole-capillary branches. Using Alexa Fluor™ 633 Hydrazide, we distinguished arterioles (containing elastin) versus capillaries (lacking elastin). In addition, our transgenic SMMHC-GCaMP6f mice allowed for us to visualize mural cell morphology and Ca 2 + signals. Lastly, isolated microvasculature was cultured in DMEM media (up to 72 h), mounted, and pressurized using our CaPA preparation. Results: U46619 induced a decrease in capillary lumen diameter using both a bath perfusion and local application. In addition, U46619 increased Ca 2 + signaling both globally and locally in contractile pericytes. In our SMMHC-GCaMP6f mice, we saw that thin strand pericytes had sparse processes while contractile pericytes had long, thick processes that wrapped around the lumen of the capillary. Fresh and cultured pericytes constricted in response to U46619 to the same level, and upstream arteriolar dilation induced by capillary stimulation with 10 mM K + remained unchanged by culture conditions adding another application of longer treatment to our approach. Conclusion: Our ex vivo CaPA methodology facilitates observation of arteriolar SMC and pericyte dynamic changes in real-time without environmental factors. This method will help to better understand how mural cells differ based on microvasculature location.

6.
Nature ; 605(7911): 741-746, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508656

RESUMO

Phosphoinositide 3-kinase δ (PI3Kδ) has a key role in lymphocytes, and inhibitors that target this PI3K have been approved for treatment of B cell malignancies1-3. Although studies in mouse models of solid tumours have demonstrated that PI3Kδ inhibitors (PI3Kδi) can induce anti-tumour immunity4,5, its effect on solid tumours in humans remains unclear. Here we assessed the effects of the PI3Kδi AMG319 in human patients with head and neck cancer in a neoadjuvant, double-blind, placebo-controlled randomized phase II trial (EudraCT no. 2014-004388-20). PI3Kδ inhibition decreased the number of tumour-infiltrating regulatory T (Treg) cells and enhanced the cytotoxic potential of tumour-infiltrating T cells. At the tested doses of AMG319, immune-related adverse events (irAEs) required treatment to be discontinued in 12 out of 21 of patients treated with AMG319, suggestive of systemic effects on Treg cells. Accordingly, in mouse models, PI3Kδi decreased the number of Treg cells systemically and caused colitis. Single-cell RNA-sequencing analysis revealed a PI3Kδi-driven loss of tissue-resident colonic ST2 Treg cells, accompanied by expansion of pathogenic T helper 17 (TH17) and type 17 CD8+ T (TC17) cells, which probably contributed to toxicity; this points towards a specific mode of action for the emergence of irAEs. A modified treatment regimen with intermittent dosing of PI3Kδi in mouse models led to a significant decrease in tumour growth without inducing pathogenic T cells in colonic tissue, indicating that alternative dosing regimens might limit toxicity.


Assuntos
Antineoplásicos , Neoplasias de Cabeça e Pescoço , Adenosina/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Imunoterapia , Camundongos , Fosfatidilinositol 3-Quinases , Quinolinas/uso terapêutico , Linfócitos T Reguladores
7.
Nat Cancer ; 3(5): 552-564, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35332334

RESUMO

Patients with hematological malignancies are at increased risk of severe COVID-19 outcomes due to compromised immune responses, but the insights of these studies have been compromised due to intrinsic limitations in study design. Here we present the PROSECO prospective observational study ( NCT04858568 ) on 457 patients with lymphoma that received two or three COVID-19 vaccine doses. We show undetectable humoral responses following two vaccine doses in 52% of patients undergoing active anticancer treatment. Moreover, 60% of patients on anti-CD20 therapy had undetectable antibodies following full vaccination within 12 months of receiving their anticancer therapy. However, 70% of individuals with indolent B-cell lymphoma displayed improved antibody responses following booster vaccination. Notably, 63% of all patients displayed antigen-specific T-cell responses, which increased after a third dose irrespective of their cancer treatment status. Our results emphasize the urgency of careful monitoring of COVID-19-specific immune responses to guide vaccination schemes in these vulnerable populations.


Assuntos
COVID-19 , Neoplasias , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19/uso terapêutico , Humanos , SARS-CoV-2 , Reino Unido/epidemiologia
8.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383712

RESUMO

Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy and main indication for heart transplantation in children. Therapies specific to pediatric DCM remain limited due to lack of a disease model. Our previous study showed that treatment of neonatal rat ventricular myocytes (NRVMs) with serum from nonfailing or DCM pediatric patients activates the fetal gene program (FGP). Here we show that serum treatment with proteinase K prevents activation of the FGP, whereas RNase treatment exacerbates it, suggesting that circulating proteins, but not circulating miRNAs, promote these pathological changes. Evaluation of the protein secretome showed that midkine (MDK) is upregulated in DCM serum, and NRVM treatment with MDK activates the FGP. Changes in gene expression in serum-treated NRVMs, evaluated by next-generation RNA-Seq, indicated extracellular matrix remodeling and focal adhesion pathways were upregulated in pediatric DCM serum and in DCM serum-treated NRVMs, suggesting alterations in cellular stiffness. Cellular stiffness was evaluated by Atomic Force Microscopy, which showed an increase in stiffness in DCM serum-treated NRVMs. Of the proteins increased in DCM sera, secreted frizzled-related protein 1 (sFRP1) was a potential candidate for the increase in cellular stiffness, and sFRP1 treatment of NRVMs recapitulated the increase in cellular stiffness observed in response to DCM serum treatment. Our results show that serum circulating proteins promoted pathological changes in gene expression and cellular stiffness, and circulating miRNAs were protective against pathological changes.


Assuntos
Cardiomiopatia Dilatada/genética , Matriz Extracelular/efeitos dos fármacos , Adesões Focais/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Adolescente , Animais , Animais Recém-Nascidos , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Criança , Pré-Escolar , Endopeptidase K/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Adesões Focais/metabolismo , Adesões Focais/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Masculino , Microscopia de Força Atômica , Midkina/metabolismo , Midkina/farmacologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , RNA-Seq , Ratos , Ribonucleases/farmacologia , Secretoma , Remodelação Ventricular/genética
9.
J Mol Cell Cardiol ; 159: 28-37, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34139234

RESUMO

AIMS: Pediatric dilated cardiomyopathy (pDCM) is characterized by unique age-dependent molecular mechanisms that include myocellular responses to therapy. We previously showed that pDCM, but not adult DCM patients respond to phosphodiesterase 3 inhibitors (PDE3i) by increasing levels of the second messenger cAMP and consequent phosphorylation of phospholamban (PLN). However, the molecular mechanisms involved in the differential pediatric and adult response to PDE3i are not clear. METHODS AND RESULTS: Quantification of serum response factor (SRF) isoforms from the left ventricle of explanted hearts showed that PDE3i treatment affects expression of SRF isoforms in pDCM hearts. An SRF isoform lacking exon 5 (SRFdel5) was highly expressed in the hearts of pediatric, but not adult DCM patients treated with PDE3i. To determine the functional consequence of expression of SRFdel5, we overexpressed full length SRF or SRFdel5 in cultured cardiomyocytes with and without adrenergic stimulation. Compared to a control adenovirus, expression of SRFdel5 increased phosphorylation of PLN, negatively affected expression of the phosphatase that promotes dephosphorylation of PLN (PP2Cε), and promoted faster calcium reuptake, whereas expression of full length SRF attenuated calcium reuptake through blunted phosphorylation of PLN. CONCLUSIONS: Taken together, these data indicate that expression of SRFdel5 in pDCM hearts in response to PDE3i contributes to improved function through regulating PLN phosphorylation and thereby calcium reuptake.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Fosforilação/fisiologia , Animais , Cardiomiopatia Dilatada/metabolismo , Linhagem Celular , Feminino , Células HEK293 , Ventrículos do Coração/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fator de Resposta Sérica/metabolismo
10.
Am J Physiol Heart Circ Physiol ; 318(4): H787-H800, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32056460

RESUMO

Despite advances in both medical and surgical therapies, individuals with single ventricle heart disease (SV) remain at high risk for the development of heart failure (HF). However, the molecular mechanisms underlying remodeling and eventual HF in patients with SV are poorly characterized. Cardiolipin (CL), an inner mitochondrial membrane phospholipid, is critical for proper mitochondrial function, and abnormalities in CL content and composition are known in various cardiovascular disease etiologies. The purpose of this study was to investigate myocardial CL content and composition in failing and nonfailing single right ventricle (RV) samples compared with normal control RV samples, to assess mRNA expression of CL biosynthetic and remodeling enzymes, and to quantitate relative mitochondrial copy number. A cross-sectional analysis of RV myocardial tissue from 22 failing SV (SVHF), 9 nonfailing SV (SVNF), and 10 biventricular control samples (BVNF) was performed. Expression of enzymes involved in CL biosynthesis and remodeling were analyzed using RT-qPCR and relative mitochondrial DNA copy number determined by qPCR. Normal phase high-pressure liquid chromatography coupled to electrospray ionization mass spectrometry was used to quantitate total and specific CL species. While mitochondrial copy number was not significantly different between groups, total CL content was significantly lower in SVHF myocardium compared with BVNF controls. Despite having lower total CL content however, the relative percentage of the major tetralinoleoyl CL species is preserved in SVHF samples relative to BVNF controls. Correspondingly, expression of enzymes involved in CL biosynthesis and remodeling were upregulated in SVHF samples when compared with both SVNF samples and BVNF controls.NEW & NOTEWORTHY The mechanisms underlying heart failure in the single ventricle (SV) congenital heart disease population are largely unknown. In this study we identify alterations in cardiac cardiolipin metabolism, composition, and content in children with SV heart disease. These findings suggest that cardiolipin could be a novel therapeutic target in this unique population of patients.


Assuntos
Cardiolipinas/biossíntese , Coração Univentricular/metabolismo , Cardiolipinas/genética , Criança , Pré-Escolar , DNA Mitocondrial/genética , Feminino , Ventrículos do Coração/anormalidades , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Masculino , Mitocôndrias Cardíacas/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coração Univentricular/genética , Remodelação Ventricular
12.
MethodsX ; 5: 599-608, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29984193

RESUMO

Accurate and reliable analysis of gene expression depends on the extraction of pure and high-quality RNA. However, while the conventional phenol-chloroform RNA extraction is preferable over silica-based columns, particularly when cost is a concern or higher RNA yield is desired, it can result in significant RNA contamination. Contaminants including excess phenol, chloroform, or salts, can have significant impacts on downstream applications, including RNA quantification and reverse transcription, that can skew data collection and interpretation. To overcome the issue of RNA contamination in the conventional phenol-chloroform based RNA extraction method, we have optimized the protocol by adding one chloroform extraction step, and several RNA washing steps. Importantly, RNA quality and purity and accuracy in the quantification of RNA concentration were significantly improved with the modified protocol, resulting in reliable data collection and interpretation in downstream gene expression analysis. •Our protocol is customized by the addition of a second chloroform extraction step. Chloroform is carefully pipetted so as to not disturb the interphase layer. Any contaminants accidentally removed from interphase will be present in subsequent steps and can result in RNA contaminated with protein or phenol. The additional chloroform step increases RNA purity.•Additionally, the addition of 2 additional ethanol washes, initially intended to remove any residual salts from the isopropanol RNA precipitation step, also removed residual phenol contamination, enhancing RNA purity.•In summary, these modifications serve to enhance not only the purity of the RNA but, also increase the accuracy and reliability of RNA quantification.

13.
JCI Insight ; 2(14)2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28724804

RESUMO

Our previous work showed myocellular differences in pediatric and adult dilated cardiomyopathy (DCM). However, a thorough characterization of the molecular pathways involved in pediatric DCM does not exist, limiting the development of age-specific therapies. To characterize this patient population, we investigated the transcriptome profile of pediatric patients. RNA-Seq from 7 DCM and 7 nonfailing (NF) explanted age-matched pediatric left ventricles (LV) was performed. Changes in gene expression were confirmed by real-time PCR (RT-PCR) in 36 DCM and 21 NF pediatric hearts and in 20 DCM and 10 NF adult hearts. The degree of myocyte hypertrophy was investigated in 4 DCM and 7 NF pediatric hearts and in 4 DCM and 9 NF adult hearts. Changes in gene expression in response to pluripotency-inducing factors were investigated in neonatal rat ventricular myocytes (NRVMs). Transcriptome analysis identified a gene expression profile in children compared with adults with DCM. Additionally, myocyte hypertrophy was not observed in pediatric hearts but was present in adult hearts. Furthermore, treatment of NRVMs with pluripotency-inducing factors recapitulated changes in gene expression observed in the pediatric DCM heart. Pediatric DCM is characterized by unique changes in gene expression that suggest maintenance of an undifferentiated state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...