Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 220: 158-68, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25010910

RESUMO

There is growing interest in studying the toxicity and health risk of exposure to multi-pollutant mixtures found in ambient air, and the U.S. Environmental Protection Agency (EPA) is moving towards setting standards for these types of mixtures. Additionally, the Health Effects Institute's strategic plan aims to develop and apply next-generation multi-pollutant approaches to understanding the health effects of air pollutants. There's increasing concern that conventional in vitro exposure methods are not adequate to meet EPA's strategic plan to demonstrate a direct link between air pollution and health effects. To meet the demand for new in vitro technology that better represents direct air-to-cell inhalation exposures, a new system that exposes cells at the air-liquid interface was developed. This new system, named the Gillings Sampler, is a modified two-stage electrostatic precipitator that provides a viable environment for cultured cells. Polystyrene latex spheres were used to determine deposition efficiencies (38-45%), while microscopy and imaging techniques were used to confirm uniform particle deposition. Negative control A549 cell exposures indicated the sampler can be operated for up to 4h without inducing any significant toxic effects on cells, as measured by lactate dehydrogenase (LDH) and interleukin-8 (IL-8). A novel positive aerosol control exposure method, consisting of a p-tolualdehyde (TOLALD) impregnated mineral oil aerosol (MOA), was developed to test this system. Exposures to the toxic MOA at a 1 ng/cm(2) dose of TOLALD yielded a reproducible 1.4 and 2-fold increase in LDH and IL-8 mRNA levels over controls. This new system is intended to be used as an alternative research tool for aerosol in vitro exposure studies. While further testing and optimization is still required to produce a "commercially ready" system, it serves as a stepping-stone in the development of cost-effective in vitro technology that can be made accessible to researchers in the near future.


Assuntos
Aerossóis/análise , Monitoramento Ambiental/instrumentação , Material Particulado/análise , Eletricidade Estática , Ar/análise , Humanos , Látex/química , Poliestirenos/química , Células Tumorais Cultivadas , Estados Unidos
2.
Environ Chem ; 10(3): 260-268, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24014080

RESUMO

Many of Houston's highest 8-h ozone (O3) peaks are characterised by increases in concentrations of at least 40 ppb in 1 h, or 60 ppb in 2 h. These rapid increases are called non-typical O3 changes (NTOCs). In 2004, the Texas Commission on Environmental Quality (TCEQ) developed a novel emissions control strategy aimed at eliminating NTOCs. The strategy limited routine and short-term emissions of ethene, propene, 1,3-butadiene and butene isomers, collectively called highly reactive volatile organic compounds (HRVOCs), which are released from petrochemical facilities. HRVOCs have been associated with NTOCs through field campaigns and modelling studies. This study analysed wind measurements and O3, formaldehyde (HCHO) and sulfur dioxide (SO2) concentrations from 2000 to 2011 at 25 ground monitors in Houston. NTOCs almost always occurred when monitors were downwind of petrochemical facilities. Rapid O3 increases were associated with low wind speeds; 75 % of NTOCs occurred when the 3-h average wind speed preceding the event was less than 6.5 km h-1. Statistically significant differences in HCHO concentrations were seen between days with and without NTOCs. Early afternoon HCHO concentrations were greater on NTOC days. In the morning before an observed NTOC event, however, there were no significant differences in HCHO concentrations between days with and without NTOCs. Hourly SO2 concentrations also increased rapidly, exhibiting behaviour similar to NTOCs. Oftentimes, the SO2 increases preceded a NTOC. These findings show that, despite the apparent success of targeted HRVOC emission controls, further restrictions may be needed to eliminate the remaining O3 events.

3.
J Air Waste Manag Assoc ; 63(1): 41-53, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23447863

RESUMO

UNLABELLED: There currently exist a number of planetary boundary layer (PBL) schemes that can represent the effects of turbulence in daytime convective conditions, although these schemes remain a large source of uncertainty in meteorology and air quality model simulations. This study evaluates a recently developed combined local and nonlocal closure PBL scheme, the Asymmetric Convective Model, version 2 (ACM2), against PBL observations taken from radar wind profilers, a ground-based lidar, and multiple daytime radiosonde balloon launches. These observations were compared against predictions of PBLs from the Weather Research and Forecasting (WRF) model version 3.1 with the ACM2 PBL scheme option, and the Fifth-Generation Meteorological Model (MM5) version 3.7.3 with the Eta PBL scheme option that is currently being used to develop ozone control strategies in southeast Texas. MM5 and WRF predictions during the regulatory modeling episode were evaluated on their ability to predict the rise and fall of the PBL during daytime convective conditions across southeastern Texas. The MM5 predicted PBLs consistently underpredicted observations, and were also less than the WRF PBL predictions. The analysis reveals that the MM5 predicted a slower rising and shallower PBL not representative of the daytime urban boundary layer. Alternatively, the WRF model predicted a more accurate PBL evolution improving the root mean square error (RMSE), both temporally and spatially. The WRF model also more accurately predicted vertical profiles of temperature and moisture in the lowest 3 km of the atmosphere. Inspection of median surface temperature and moisture time-series plots revealed higher predicted surface temperatures in WRF and more surface moisture in MM5. These could not be attributed to surface heat fluxes, and thus the differences in performance of the WRF and MM5 models are likely due to the PBL schemes. IMPLICATIONS: An accurate depiction of the diurnal evolution of the planetary boundary layer (PBL) is necessary for realistic air quality simulations, and for formulating effective policy. The meteorological model used to support the southeast Texas 03 attainment demonstration made predictions of the PBL that were consistently less than those found in observations. The use of the Asymmetric Convective Model, version 2 (ACM2), predicted taller PBL heights and improved model predictions. A lower predicted PBL height in an air quality model would increase precursor concentrations and change the chemical production of O3 and possibly the response to control strategies.


Assuntos
Movimentos do Ar , Convecção , Modelos Teóricos , Umidade , Radar , Temperatura , Texas
4.
Environ Sci Technol ; 46(16): 9062-70, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22834915

RESUMO

One of the most widely used in vitro particulate matter (PM) exposures methods is the collection of PM on filters, followed by resuspension in a liquid medium, with subsequent addition onto a cell culture. To avoid disruption of equilibria between gases and PM, we have developed a direct in vitro sampling and exposure method (DSEM) capable of PM-only exposures. We hypothesize that the separation of phases and post-treatment of filter-collected PM significantly modifies the toxicity of the PM compared to direct deposition, resulting in a distorted view of the potential PM health effects. Controlled test environments were created in a chamber that combined diesel exhaust with an urban-like mixture. The complex mixture was analyzed using both the DSEM and concurrently collected filter samples. The DSEM showed that PM from test atmospheres produced significant inflammatory response, while the resuspension exposures at the same exposure concentration did not. Increasing the concentration of resuspended PM sixteen times was required to yield measurable IL-8 expression. Chemical analysis of the resuspended PM indicated a total absence of carbonyl compounds compared to the test atmosphere during the direct-exposures. Therefore, collection and resuspension of PM into liquid modifies its toxicity and likely leads to underestimating toxicity.


Assuntos
Poluentes Atmosféricos/toxicidade , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/análise , Atmosfera , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Humanos , Interleucina-8/genética , RNA Mensageiro/genética , Emissões de Veículos/análise
5.
J Air Waste Manag Assoc ; 62(6): 696-706, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22788108

RESUMO

In Houston, some of the highest measured 8-hr ozone (O3) peaks are characterized by sudden increases in observed concentrations of at least 40 ppb in 1 hr or 60 ppb in 2 hr. Measurements show that these large hourly changes appear at only a few monitors and span a narrow geographic area, suggesting a spatially heterogeneous field of O3 concentrations. This study assessed whether a regulatory air quality model (AQM) can simulate this observed behavior. The AQM did not reproduce the magnitude or location of some of the highest observed hourly O3 changes, and it also failed to capture the limited spatial extent. On days with measured large hourly changes in O3 concentrations, the AQM predicted high O3 over large regions of Houston, resulting in overpredictions at several monitors. This analysis shows that the model can make high O3, but on these days the predicted spatial field suggests that the model had a different cause. Some observed large hourly changes in O3 concentrations have been linked to random releases of industrial volatile organic compounds (VOCs). In the AQM emission inventory, there are several emission events when an industrial point source increases VOC emissions in excess of 10,000 mol/hr. One instance increased predicted downwind O3 concentrations up to 25 ppb. These results show that the modeling system is responsive to a large VOC release, but the timing and location of the release, and meteorological conditions, are critical requirements. Attainment of the O3 standard requires the use of observational data and AQM predictions. If the large observed hourly changes are indicative of a separate cause of high O3, then the model may not include that cause, which might result in regulators enacting control strategies that could be ineffective.


Assuntos
Poluentes Atmosféricos/química , Monitoramento Ambiental , Modelos Químicos , Ozônio/química , Poluição do Ar , Cidades , Texas , Fatores de Tempo
6.
J Air Waste Manag Assoc ; 61(3): 238-53, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21416750

RESUMO

To comply with the federal 8-hr ozone standard, the state of Texas is creating a plan for Houston that strictly follows the U.S. Environmental Protection Agency's (EPA) guidance for demonstrating attainment. EPA's attainment guidance methodology has several key assumptions that are demonstrated to not be completely appropriate for the unique observed ozone conditions found in Houston. Houston's ozone violations at monitoring sites are realized as gradual hour-to-hour increases in ozone concentrations, or by large hourly ozone increases that exceed up to 100 parts per billion/hr. Given the time profiles at the violating monitors and those of nearby monitors, these large increases appear to be associated with small parcels of spatially limited plumes of high ozone in a lower background of urban ozone. Some of these high ozone parcels and plumes have been linked to a combination of unique wind conditions and episodic hydrocarbon emission events from the Houston Ship Channel. However, the regulatory air quality model (AQM) does not predict these sharp ozone gradients. Instead, the AQM predicts gradual hourly increases with broad regions of high ozone covering the entire Houston urban core. The AQM model performance can be partly attributed to EPA attainment guidance that prescribes the removal in the baseline model simulation of any episodic hydrocarbon emissions, thereby potentially removing any nontypical causes of ozone exceedances. This paper shows that attainment of all monitors is achieved when days with observed large hourly variability in ozone concentrations are filtered from attainment metrics. Thus, the modeling and observational data support a second unique cause for how ozone is formed in Houston, and the current EPA methodology addresses only one of these two causes.


Assuntos
Poluentes Atmosféricos/normas , Ozônio/normas , Poluição do Ar/prevenção & controle , Algoritmos , Monitoramento Ambiental , Ozônio/análise , Texas
7.
J Air Waste Manag Assoc ; 60(9): 1105-17, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20863055

RESUMO

Regions with concentrated petrochemical industrial activity (e.g., Houston or Baton Rouge) frequently experience large, localized releases of volatile organic compounds (VOCs). Aircraft measurements suggest these released VOCs create plumes with ozone (O3) production rates 2-5 times higher than typical urban conditions. Modeling studies found that simulating high O3 productions requires superfine (1-km) horizontal grid cell size. Compared with fine modeling (4-kmin), the superfine resolution increases the peak O3 concentration by as much as 46%. To understand this drastic O3 change, this study quantifies model processes for O3 and "odd oxygen" (Ox) in both resolutions. For the entire plume, the superfine resolution increases the maximum O3 concentration 3% but only decreases the maximum Ox concentration 0.2%. The two grid sizes produce approximately equal Ox mass but by different reaction pathways. Derived sensitivity to oxides of nitrogen (NOx) and VOC emissions suggests resolution-specific sensitivity to NOx and VOC emissions. Different sensitivity to emissions will result in different O3 responses to subsequently encountered emissions (within the city or downwind). Sensitivity of O3 to emission changes also results in different simulated O3 responses to the same control strategies. Sensitivity of O3 to NOx and VOC emission changes is attributed to finer resolved Eulerian grid and finer resolved NOx emissions. Urban NOx concentration gradients are often caused by roadway mobile sources that would not typically be addressed with Plume-in-Grid models. This study shows that grid cell size (an artifact of modeling) influences simulated control strategies and could bias regulatory decisions. Understanding the dynamics of VOC plume dependence on grid size is the first step toward providing more detailed guidance for resolution. These results underscore VOC and NOx resolution interdependencies best addressed by finer resolution. On the basis of these results, the authors suggest a need for quantitative metrics for horizontal grid resolution in future model guidance.


Assuntos
Poluentes Atmosféricos/química , Resíduos Industriais , Modelos Teóricos , Ozônio/química , Compostos Orgânicos Voláteis/química , Movimentos do Ar , Poluição do Ar , Simulação por Computador , Nitratos/química , Texas , Fatores de Tempo
8.
J Air Waste Manag Assoc ; 60(7): 838-48, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20681431

RESUMO

In 2007, the U.S. Environmental Protection Agency (EPA) released guidance on demonstrating attainment of the federal ozone (O3) standard. This guidance recommended a change in the use of air quality model (AQM) predictions from an absolute to a relative way. This was accomplished by using a ratio, and not the absolute difference of AQM O3 predictions from a historical year to an attainment year. This ratio of O3 concentrations, labeled the relative response factor (RRF), is multiplied by an average of observed concentrations at every monitor. In this analysis, whether the methodology used to calculate RRFs is severing the source-receptor relationship for a given monitor was investigated. Model predictions were generated with a regulatory AQM system used to support the 2004 Houston-Galveston-Brazoria State Implementation Plan. Following the procedures in the EPA guidance, an attainment demonstration was completed using regulatory AQM predictions and measurements from the Houston ground-monitoring network. Results show that the model predictions used for the RRF calculation were often based on model conditions that were geographically remote from observations and counter to wind flow. Many of the monitors used the same model predictions for an RRF, even if that O3 plume did not impact it. The RRF methodology resulted in severing the true source-receptor relationship for a monitor. This analysis also showed that model performance could influence RRF values, and values at monitoring sites appear to be sensitive to model bias. Results indicate an inverse linear correlation of RRFs with model bias at each monitor (R2 = 0.47), resulting in a change in future O3 design values up to 5 parts per billion (ppb). These results suggest that the application of RRF methodology in Houston, TX, should be changed from using all model predictions above 85 ppb to a method that removes any predictions that are not relevant to the observed source-receptor relationship.


Assuntos
Poluentes Atmosféricos/química , Poluentes Atmosféricos/normas , Poluição do Ar/legislação & jurisprudência , Ozônio/química , Ozônio/normas , Poluição do Ar/prevenção & controle , Monitoramento Ambiental , Texas , Estados Unidos , United States Environmental Protection Agency/legislação & jurisprudência
9.
Chem Biol Interact ; 166(1-3): 156-62, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17328875

RESUMO

1,3-Butadiene (BD) in the atmosphere is a highly reactive hazardous air pollutant, which has a short lifetime and is quickly transformed to reaction products, some of which are also toxic. The ability to predict exposure to BD and its' products requires models with chemical mechanisms which can simulate these transformations. The atmospheric photochemical reactions of BD have been studied in the University of North Carolina Outdoor smog chamber, which has been used for over 30 years to test photochemical mechanisms for air quality simulation models for ozone. Experiments have been conducted under conditions of real sunlight and realistic temperature and humidity to study the transformations of BD and to develop and test chemical mechanisms for the simulation of these processes. Experimental observation of time-concentration data of BD decay and the formation of many products is compared to simulation results. This chemical mechanism can be incorporated into air quality simulation models which can be used to estimate ambient concentrations needed for exposure estimates.


Assuntos
Atmosfera/química , Butadienos/química , Fotoquímica/métodos , Câmaras de Exposição Atmosférica , Óxido Nítrico/análise , Dióxido de Nitrogênio/análise , Oxirredução/efeitos da radiação , Ozônio/análise , Luz Solar
10.
Inhal Toxicol ; 16 Suppl 1: 107-14, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15204799

RESUMO

Complex urban air mixtures that realistically mimic urban smog can be generated for investigating adverse health effects. "Smog chambers" have been used for over 30 yr to conduct experiments for developing and testing photochemical models that predict ambient ozone (O(3)) concentrations and aerosol chemistry. These chambers were used to generate photochemical and nonirradiated systems, which were interfaced with an in vitro exposure system to compare the inflammatory effects of complex air pollutant mixtures with and without sunlight-driven chemistry. These are preliminary experiments in a new project to study the health effects of particulate matter and associated gaseous copollutants. Briefly, two matched outdoor chambers capable of using real sunlight were utilized to generate two test atmospheres for simultaneous exposures to cultured lung cells. One chamber was used to produce a photochemically active system, which ran from sunrise to sunset, producing O(3) and the associated secondary products. A few hours after sunset, NO was added to titrate and remove completely the O(3), forming NO(2). In the second chamber, an equal amount of NO(2) and the same amount of the 55-component hydrocarbon mixture used to setup the photochemical system in the first side were injected. A549 cells, from an alveolar type II-like cell line grown on membranous support, were exposed to the photochemical mixture or the "original" NO(2)/hydrocarbon mixture for 5 h and analyzed for inflammatory response (IL-8 mRNA levels) 4 h postexposure. In addition, a variation of this experiment was conducted to compare the photochemical system producing O(3) and NO(2), with a simple mixture of only the O(3) and NO(2). Our data suggest that the photochemically altered mixtures that produced secondary products induced about two- to threefold more IL-8 mRNA than the mixture of NO(2) and hydrocarbons or O(3). These results indicate that secondary products generated through the photochemical reactions of NO(x) and hydrocarbons may significantly contribute to the inflammatory responses induced by exposure to urban smog. From previous experience with relevant experiments, we know that many of these gaseous organic products would contribute to the formation of significant secondary organic particle mass in the presence of seed particles (including road dust or combustion products). In the absence of such particles, these gaseous products remained mostly as gases. These experiments show that photochemically produced gaseous products do influence the toxic responses of the cells in the absence of particles.


Assuntos
Poluentes Atmosféricos/farmacologia , Células Epiteliais/imunologia , Hidrocarbonetos/farmacologia , Pulmão/imunologia , Óxidos de Nitrogênio/farmacologia , Smog , Poluentes Atmosféricos/química , Câmaras de Exposição Atmosférica , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Inflamação , Interleucina-8/análise , Interleucina-8/biossíntese , Pulmão/efeitos dos fármacos , Pulmão/patologia , Ozônio/química , Fotoquímica , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Luz Solar , Temperatura , Saúde da População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...